Количество солнечной энергии на квадратный метр. Сколько солнечной энергии попадает на землю? Энергия нашего Солнца

Солнечная энергия

Параметры солнечного излучения

Прежде всего необходимо оценить потенциальные энергетические возможности солнечного излучения. Здесь наибольшее значение имеет его общая удельная мощность у поверхности Земли и распределение этой мощности по разным диапазонам излучения.

Мощность солнечного излучения

Мощность излучения Солнца, находящегося в зените, у поверхности Земли оценивается примерно в 1350 Вт/м2. Простой расчёт показывает, что для получения мощности 10 кВт необходимо собрать солнечное излучение с площади всего лишь 7.5 м2. Но это — в ясный полдень в тропической зоне высоко в горах, где атмосфера разрежена и кристально прозрачна. Как только Солнце начинает склоняться к горизонту, путь его лучей сквозь атмосферу увеличивается, соответственно, возрастают и потери на этом пути. Присутствие в атмосфере пыли или паров воды, даже в неощутимых без специальных приборов количествах, ещё более снижает поток энергии. Однако и в средней полосе в летний полдень на каждый квадратный метр, ориентированный перпендикулярно солнечным лучам, приходится поток солнечной энергии мощностью примерно 1 кВт.

Конечно, даже небольшая облачность резко уменьшает энергию, достигающую поверхности, особенно в инфракрасном (тепловом) диапазоне. Тем не менее, часть энергии всё равно проникает сквозь тучи. В средней полосе при сильной облачности в полдень мощность солнечного излучения, дошедшего до поверхности Земли, оценивается примерно в 100 Вт/м2 и лишь в редких случаях при особо плотной облачности может опускаться ниже этой величины. Очевидно, что в таких условиях для получения 10 кВт необходимо полностью, без потерь и отражения, собрать солнечное излучение уже не с 7.5 м2 земной поверхности, а с целой сотки (100 м2).

В таблице приведены краткие усреднённые данные по энергии солнечного излучения для некоторых городов России с учётом климатических условий (частоты и силы облачности) на единицу горизонтальной поверхности. Детализация этих данных, дополнительные данные для ориентаций панелей, отличных от горизонтальной, а также данные для других областей России и стран бывшего СССР приведены на отдельной странице .

Город

месячный минимум
(декабрь)

месячный максимум
(июнь или июль)

суммарно за год

Архангельск

4 МДж / м 2 (1.1 кВт·ч / м 2)

575 МДж / м 2 (159.7 кВт·ч / м 2)

3.06 ГДж / м 2 (850 кВт·ч / м 2)

Астрахань

95.8 МДж / м 2 (26.6 кВт·ч / м 2)

755.6 МДж / м 2 (209.9 кВт·ч / м 2)

4.94 ГДж / м 2 (1371 кВт·ч / м 2)

Владивосток

208.1 МДж / м 2 (57.8 кВт·ч / м 2)

518.0 МДж / м 2 (143.9 кВт·ч / м 2)

4.64 ГДж / м 2 (1289.5 кВт·ч / м 2)

Екатеринбург

46 МДж / м 2 (12.8 кВт·ч / м 2)

615 МДж / м 2 (170.8 кВт·ч / м 2)

3.76 ГДж / м 2 (1045 кВт·ч / м 2)

Москва

42.1 МДж / м 2 (11.7 кВт·ч / м 2)

600.1 МДж / м 2 (166.7 кВт·ч / м 2)

3.67 ГДж / м 2 (1020.7 кВт·ч / м 2)

Новосибирск

638 МДж / м 2 (177.2 кВт·ч / м 2)

4.00 ГДж / м 2 (1110 кВт·ч / м 2)

Омск

56 МДж / м 2 (15.6 кВт·ч / м 2)

640 МДж / м 2 (177.8 кВт·ч / м 2)

4.01 ГДж / м 2 (1113 кВт·ч / м 2)

Петрозаводск

8.6 МДж / м 2 (2.4 кВт·ч / м 2)

601.6 МДж / м 2 (167.1 кВт·ч / м 2)

3.10 ГДж / м 2 (860.0 кВт·ч / м 2)

Петропавловск-Камчатский

83.9 МДж / м 2 (23.3 кВт·ч / м 2)

560.9 МДж / м 2 (155.8 кВт·ч / м 2)

3.95 ГДж / м 2 (1098.4 кВт·ч / м 2)

Ростов-на-Дону

80 МДж / м 2 (22.2 кВт·ч / м 2)

678 МДж / м 2 (188.3 кВт·ч / м 2)

4.60 ГДж / м 2 (1278 кВт·ч / м 2)

Санкт-Петербург

8 МДж / м 2 (2.2 кВт·ч / м 2)

578 МДж / м 2 (160.6 кВт·ч / м 2)

3.02 ГДж / м 2 (840 кВт·ч / м 2)

Сочи

124.9 МДж / м 2 (34.7 кВт·ч / м 2)

744.5 МДж / м 2 (206.8 кВт·ч / м 2)

4.91 ГДж / м 2 (1365.1 кВт·ч / м 2)

Южно-Сахалинск

150.1 МДж / м 2 (41.7 кВт·ч / м 2)

586.1 МДж / м 2 (162.8 кВт·ч / м 2)

4.56 ГДж / м 2 (1267.5 кВт·ч / м 2)

Неподвижная панель, размещённая под оптимальным углом наклона, способна воспринять в 1.2 .. 1.4 раза больше энергии по сравнению с горизонтальной, а если она будет поворачиваться вслед за Солнцем, то прибавка составит 1.4 .. 1.8 раза. В этом можно убедиться, с разбивкой по месяцам для неподвижных панелей, ориентированных на юг под разными углами наклона, и для систем, отслеживающих движение Солнца. Особенности размещения солнечных панелей более подробно обсуждаются ниже .

Прямое и рассеянное солнечное излучение

Различают рассеянное и прямое солнечное излучение. Для эффективного восприятия прямого солнечного излучения панель должна быть ориентирована перпендикулярно потоку солнечного света. Для восприятия рассеянного излучения ориентация не так критична, так как оно достаточно равномерно приходит почти со всего небосвода — именно так освещается земная поверхность в пасмурные дни (по этой причине в пасмурную погоду предметы не имеют чётко оформленной тени, а вертикальные поверхности, такие как столбы и стены домов, практически не отбрасывают видимую тень).

Соотношение прямого и рассеянного излучения сильно зависит от погодных условий в разные сезоны. Например, в Москве зима пасмурная, и в январе доля рассеянного излучения превышает 90% от общей инсоляции. Но даже московским летом рассеянное излучение составляет почти половину от всей солнечной энергии, достигающей земной поверхности. В то же время в солнечном Баку и зимой, и летом доля рассеянного излучения составляет от 19 до 23% общей инсоляции, а около 4/5 солнечного излучения, соответственно, является прямым. Более подробно соотношение рассеянной и полной инсоляции для некоторых городов приведено на отдельной странице .

Распределение энергии в солнечном спектре

Солнечный спектр является практически непрерывным в крайне широком диапазоне частот — от низкочастотного радиоволнового до сверхвысокочастотного рентгеновского и гамма-излучения. Безусловно, трудно одинаково эффективно улавливать столь разные виды излучения (пожалуй, это можно осуществить лишь теоретически с помощью «идеального абсолютно чёрного тела»). Но это и не надо — во-первых, само Солнце в разных частотных диапазонах излучает с различной силой, а во-вторых, не всё, что излучило Солнце, достигает поверхности Земли — отдельные участки спектра в значительной степени поглощаются разными компонентами атмосферы — преимущественно озоновым слоем, парами воды и углекислым газом.

Поэтому нам достаточно определить те диапазоны частот, в которых наблюдается наибольший поток солнечной энергии у поверхности Земли, и использовать именно их. Традиционно солнечное и космическое излучение разделяется не по частоте, а по длине волны (это связано со слишком большими показателями степени для частот этого излучения, что весьма неудобно — видимому свету в герцах соответствует 14-й порядок). Посмотрим же зависимость распределения энергии от длины волны для солнечного излучения.

Диапазоном видимого света считается участок длин волн от 380 нм (глубокий фиолетовый) до 760 нм (глубокий красный). Всё, что имеет меньшую длину волны, обладает более высокой энергией фотонов и подразделяется на ультрафиолетовый, рентгеновский и гамма- диапазоны излучения. Невзирая на высокую энергию фотонов, самих фотонов в этих диапазонах не так уж много, поэтому общий энергетический вклад этого участка спектра весьма мал. Всё, что имеет бóльшую длину волны, обладает меньшей по сравнению с видимым светом энергией фотонов и подразделяется на инфракрасный диапазон (тепловое излучение) и различные участки радиодиапазона. Из графика видно, что в инфракрасном диапазоне Солнце излучает практически столько же энергии, как и в видимом (уровни меньше, зато диапазон шире), а вот в радиочастотном диапазоне энергия излучения очень мала.

Таким образом, с энергетической точки зрения нам достаточно ограничиться видимым и инфракрасным частотными диапазонами, а также ближним ультрафиолетом (где-то до 300 нм, более коротковолновый жёсткий ультрафиолет практически полностью поглощается в так называемом озоновом слое, обеспечивая синтез этого самого озона из атмосферного кислорода). А львиная доля солнечной энергии, достигающей поверхности Земли, сосредоточена в диапазоне длин волн от 300 до 1800 нм.

Ограничения при использовании солнечной энергии

Главные ограничения, связанные с использованием солнечной энергии, вызваны её непостоянством — солнечные установки не работают ночью и малоэффективны в пасмурную погоду. Это очевидно практически всем.

Однако есть и ещё одно обстоятельство, которое особенно актуально для наших довольно северных широт — это сезонные различия в продолжительности дня. Если для тропической и экваториальной зоны длительность дня и ночи слабо зависит от времени года, то уже на широте Москвы самый короткий день меньше самого длинного почти в 2.5 раза! Про приполярные области я уже не говорю... В результате в ясный летний день солнечная установка под Москвой может произвести энергии не меньше, чем на экваторе (солнце пониже, зато день длиннее). Однако зимой, когда потребность в энергии особенно высока, её выработка, наоборот, снизится в несколько раз. Ведь помимо короткого светового дня, лучи низкого зимнего солнца даже в полдень должны проходить гораздо более толстый слой атмосферы и потому теряют на этом пути существенно больше энергии, чем летом, когда солнце стоит высоко и лучи идут сквозь атмосферу почти отвесно (выражение «холодное зимнее солнце» имеет самый прямой физический смысл). Тем не менее, это вовсе не означает, что солнечные установки в средней полосе и даже в гораздо более северных районах совсем бесполезны — хотя зимой от них мало пользы, эато в период длинных дней, как минимум полгода между весенним и осенним равноденствиями, они вполне эффективны.

Особенно интересно применение солнечных установок для приведения в действие всё шире рас-прос-тра-ня-ю-щих-ся, но весьма «прожорливых» кондиционеров. Ведь чем сильнее светит солнце, тем жарче и тем нужнее кондиционер. Но в таких условиях и солнечные установки способны выработать больше энергии, причём эта энергия будет использована кондиционером именно «здесь и сейчас», её не надо аккумулировать и хранить! К тому же совсем необязательно преобразовывать энергию в электрическую форму — абсорбционные тепловые машины используют тепло непосредственно, а это значит, что вместо фотоэлектрических батарей можно использовать солнечные коллекторы , наиболее эффективные как раз в ясную жаркую погоду. Правда, я считаю, что кондиционеры незаменимы лишь в жарких безводных регионах и во влажном тропическом климате, а также в современных городах независимо от их месторасположения. Грамотно спроектированный и построенный загородный дом не только в средней полосе, но и на большей части юга России не нуждается в столь энергетически прожорливом, громоздком, шумном и капризном устройстве.

К сожалению, в условиях городской застройки индивидуальное использование более-менее мощных солнечных установок со сколько-нибудь заметной практической пользой возможно лишь в редких случаях особо удачного стечения обстоятельств. Впрочем, я не считаю городскую квартиру полноценным жильём, поскольку её нормальное функционирование зависит от слишком большого количества факторов, не доступных непосредственному контролю жильцов по чисто техническим причинам, а потому в случае выхода из строя на более-менее длительное время хотя бы одной из систем жизнеобеспечения современного многоквартирного дома условия там не будут приемлемы для жизни (скорее, квартиру в многоэтажке надо рассматривать как своего рода гостиничный номер, который жильцы выкупили в бессрочное пользование или арендуют у муниципалитета). Зато за городом особое внимание к солнечной энергии может быть более чем оправданным даже на маленьком участке в 6 соток.

Особенности размещения солнечных панелей

Выбор оптимальной ориентации солнечных панелей является одним из важнейших вопросов при практическом использовании солнечных установок любого типа. К сожалению, на различных сайтах, посвящённых солнечной энергии, этот аспект рассматривается очень мало, хотя пренебрежение им способно снизить эффективность панелей до неприемлемого уровня.

Дело в том, что угол падения лучей на поверхность сильно влияет на коэффициент отражения, а следовательно, на долю невоспринятой солнечной энергии. Например, для стекла при отклонении угла падения от перпендикуляра к его поверхности до 30° коэффициент отражения практически не меняется и составляет чуть менее 5%, т.е. более 95% падающего излучения проходят внутрь. Далее рост отражения становится заметным, и к 60° доля отражённого излучения увеличивается вдвое — почти до 10%. При угле падения 70° отражается около 20% излучения, а при 80° — 40%. Для большинства других веществ зависимость степени отражения от угла падения имеет примерно тот же характер.

Ещё важнее так называемая эффективная площадь панели, т.е. перекрываемое ею сечение потока излучения. Она равна реальной площади панели, умноженной на синус угла между её плоскостью и направлением потока (или, что то же самое, на косинус угла между перепендикуляром к панели и направлением потока). Поэтому, если панель перпендикулярна потоку, её эффективная площадь равна её реальной площади, если поток отклонился от перпендикуляра на 60° — половине реальной площади, а если поток параллелен панели, её эффективная площадь равна нулю. Таким образом, существенное отклонение потока от перпендикуляра к панели не только увеличивает отражение, но снижает её эффективную площадь, что обуславливает очень заметное падение выработки.

Очевидно, что для наших целей наиболее эффективна постоянная ориентация панели перпендикулярно потоку солнечных лучей. Но это потребует изменения положения панели в двух плоскостях, поскольку положение Солнца на небе зависит не только от времени суток, но и от времени года. Хотя такая система, безусловно, технически возможна, она получается весьма сложной, а потому дорогой и не слишком надёжной.

Однако вспомним, что при углах падения до 30° коэффициент отражения на границе «воздух-стекло» минимален и практически неизменен, а в течении года угол максимального подъёма Солнца над горизонтом отклоняется от среднего положения не более чем на ±23°. Эффективная площадь панели при отклонении от перпендикуляра на 23° также остаётся достаточно большой — не менее 92% от её реальной площади. Поэтому можно ориентироваться на среднегодовую высоту максимального подъёма Солнца и практически без потери эффективности ограничиться вращением лишь в одной плоскости — вокруг полярной оси Земли со скоростью 1 оборот в сутки. Угол наклона оси такого вращения относительно горизонтали равен географической широте места. Например, для Москвы, расположенной на широте 56°, ось такого вращения должна быть наклонена на север на 56° относительно поверхности (или, что то же самое, отклонена от вертикали на 34°). Такое вращение организовать уже гораздо проще, однако для безпрепятственного вращения большой панели нужно немало места. Кроме того, необходимо либо организовать скользящее соединение, позволяющее отводить от постоянно вращающейся панели всю полученную ею энергию, либо ограничиться гибкими коммуникациями с фиксированным соединением, но обеспечить автоматический возврат панели обратно в ночное время, — в противном случае не избежать перекручивания и обрыва отводящих энергию коммуникаций. Оба решения резко повышают сложность и снижают надёжность системы. При возрастании мощности панелей (а значит, их размеров и веса) технические проблемы усложняются в геометрической прогрессии.

В связи со всем вышеизложенным, практически всегда панели индивидуальных солнечных установок монтируются неподвижно, что обеспечивает относительную дешевизну и высочайшую надёжность установки. Однако здесь особенно важным становится выбор угла размещения панели. Рассмотрим эту проблему на примере Москвы .


Оранжевая линия — при отслеживании положения Солнца вращением вокруг полярной оси (т.е. параллельно земной оси); синий — неподвижная горизонтальная панель; зелёный — неподвижная вертикальная панель, ориентированная на юг; красный — неподвижная панель, наклонённая на юг под углом 40° к горизонту.

Посмотрим на диаграммы инсоляции для различных углов установки панелей. Конечно, панель, поворачивающаяся вслед за Солнцем, вне конкуренции (оранжевая линия). Однако даже в длинные летние дни её эффективность превышает эффективность неподвижных горизонтальной (синяя) и наклонённой под оптимальным углом (красная) панелей всего лишь примерно на 30%. Но в эти дни тепла и света и так хватает! А вот в наиболее энергодефицитный период с октября по февраль преимущество поворотной панели над неподвижными минимально и практически неощутимо. Правда, в это время компанию наклонной панели составляет не горизонтальная, а вертикальная панель (зелёная линия). И это не удивительно — низкие лучи зимнего солнца скользят по горизонтальной панели, но хорошо воспринимаются почти перпендикулярной им вертикальной. Поэтому в феврале, ноябре и декабре вертикальная панель по своей эффективности превосходит даже наклонную и почти не отличается от поворотной. В марте и октябре день более длинный, и поворотная панель уже начинает уверенно (хотя и не очень сильно) превосходить любые неподвижные варианты, но эффективность наклонной и вертикальной панелей практически одинакова. И лишь в период длинных дней с апреля по август горизонтальная панель по полученной энергии опережает вертикальную и приближается к наклонной, а в июне даже чуть превосходит её. Летний проигрыш вертикальной панели закономерен — ведь, скажем, день летнего равноденствия длится в Москве более 17 часов, а в передней (рабочей) полусфере вертикальной панели Солнце может находиться не более 12 часов, остальные 5 с лишним часов (почти треть светового дня!) оно находится позади неё. Если же учесть, что при углах падения более 60° доля отражённого от поверхности панели света начинает стремительно расти, а её эффективная площадь сокращается в два раза и более, то время эффективного восприятия солнечного излучения для такой панели не превышает 8 часов — то есть менее 50% от общей продолжительности дня. Именно этим объясняется факт стабилизации производительности вертикальных панелей в течении всего периода длинных дней — с марта по сентябрь. И наконец, несколько особняком стоит январь — в этом месяце производительность панелей всех ориентаций практически одинакова. Дело в том, что этот месяц в Москве очень пасмурный, и более 90% всей солнечной энергии приходится нарассеянное излучение , а для такого излучения ориентация панели не слишком важна (главное, не направить её в землю). Однако несколько солнечных дней, всё же бывающих в январе, снижают выработку горизонтальной панели на 20% по сравнению с остальными.

Какой же угол наклона выбрать? Всё зависит от того, когда именно Вам нужна солнечная энергия. Если Вы хотите пользоваться ею только в тёплый период (скажем, на даче), то стоит выбрать так называемый «оптимальный» угол наклона, перпендикулярный к среднему положению Солнца в период между весенним и осенним равноденствиями. Он примерно на 10° .. 15° меньше географической широты и для Москвы составляет 40° .. 45°. Если же энергия Вам нужна круглогодично, то следует «выжимать» максимум именно в энергодефицитные зимние месяцы, а значит, надо ориентироваться на среднее положение Солнца между осенним и весенним равноденствиями и размещать панели ближе к вертикали — на 5° .. 15° больше географической широты (для Москвы это будет 60° .. 70°). Если же по архитектурным или конструктивным соображениям выдержать такой угол невозможно и надо выбирать между углом наклона в 40° и меньше или вертикальной установкой, следует предпочесть вертикальное положение. При этом «недобор» энергии в длинные летние дни не так критичен — в этот период полно естественного тепла и света, и потребность в выработке энергии обычно не так велика, как зимой и в межсезонье. Естественно, наклон панели должен быть ориентирован на юг, хотя отклонение от этого направления на 10° .. 15° к востоку или к западу мало что меняет и потому вполне допустимо.

Горизонтальное размещение солнечных панелей на всей территории России неэффективно и абсолютно неоправдано. Помимо слишком большого снижения выработки энергии в осенне-зимний период, на горизонтальных панелях интенсивно скапливается пыль, а зимой ещё и снег, и удалить их оттуда можно только с помощью специально организованной уборки (как правило, вручную). Если же наклон панели превышает 60°, то снег на её поверхности задерживается мало и обычно быстро осыпается сам по себе, а тонкий слой пыли хорошо смывается дождями.

Поскольку в последнее время цены на солнечное оборудование снижаются, может оказаться выгодным вместо единого поля солнечных панелей, ориентированного на юг, использовать два с большей суммарной мощностью , ориентированных на смежные (юго-восток и юго-запад) и даже противоположные (восток и запад) стороны света. Это обеспечит более равномерную выработку в солнечные дни и повышенную выработку в пасмурную погоду, при том, что остальное оборудование останется рассчитанным на прежнюю, относительно невысокую мощность, а потому будет более компактным и дешёвым.

И последнее. Стекло, поверхность которого не гладкая, а имеет специальный рельеф, способно гораздо более эффективно воспринимать боковой свет и передавать его на рабочие элементы солнечной панели. Наиболее оптимальным представляется волнообразный рельеф с ориентацией выступов и впадин с севера на юг (для вертикальных панелей — сверху вниз), — своеобразная линейная линза. Рифлёное стекло способно увеличить выработку неподвижной панели на 5% и более.

Традиционные типы установок для использования солнечной энергии

Время от времени появляются сообщения о строительстве очередной солнечной электростанции (СЭС) или опреснительной установки. По всему миру, от Африки до Скандинавии, применяются тепловые солнечные коллекторы и фотоэлектрические солнечные батареи. Эти методы использования солнечной энергии развиваются уже не один десяток лет, им посвящено множество сайтов в Интернете. Поэтому здесь я рассмотрю их в самых общих чертах. Впрочем, один важнейший момент в Интернете практически не освещается — это выбор конкретных параметров при создании индивидуальной системы солнечного энергоснабжения. Между тем этот вопрос не так прост, как кажется на первый взгляд. Пример выбора параметров для системы на солнечных батареях приведён на отдельной странице .

Солнечные батареи

Вообще говоря, под «солнечной батареей» можно понимать любой набор одинаковых модулей, воспринимающих солнечное излучение и объединённых в единое устройство, в том числе чисто тепловых, но традиционно этот термин закрепился именно за панелями фотоэлектрических преобразователей. Поэтому под термином «солнечная батарея» практически всегда подразумевается фотоэлектрическое устройство, непосредственно преобразующие солнечное излучение в электрический ток. Эта технология активно развивается с середины XX века. Огромным стимулом для её развития стало освоение космического пространства, где конкуренцию солнечным батареям по производимой мощности и длительности работы в настоящее время могут составить лишь малогабаритные ядерные источники энергии. За это время эффективность преобразования солнечных батарей возросла с одного-двух процентов до 17% и более в массовых относительно дешёвых моделях и свыше 42% в опытных образцах. Значительно увеличился срок службы и надёжность работы.

Достоинства солнечных батарей

Главное достоинство солнечных батарей — их предельная конструктивная простота и полное отсутствие подвижных деталей. Как следствие этого — небольшой удельный вес и неприхотливость в сочетании с высокой надёжностью, а также максимально простой монтаж и минимальные требования к обслуживанию во время эксплуатации (обычно достаточно лишь удалять с рабочей поверхности грязь по мере её накопления). Представляя собой плоские элементы малой толщины, они вполне успешно размещаются на обращённом к солнцу скате крыши или на стене дома, практически не требуя для себя какого-то дополнительного места и возведения отдельных громоздких конструкций. Единственное условие — ничто не должно затенять их в течении как можно большего времени.

Ещё одно важнейшее достоинство — это то, что энергия вырабатывается сразу в виде электричества — в наиболее универсальной и удобной на сегодняшний день форме.

К сожалению, ничто не вечно — эффективность фотоэлектрических преобразователей падает в течение срока службы. Полупроводниковые пластины, из которых обычно состоят солнечные батареи, со временем деградируют и утрачивают свои свойства, в результате и без того не слишком высокий КПД солнечных батарей становится ещё меньше. Длительное воздействие высоких температур ускоряет этот процесс. Сначала я отмечал это как недостаток фотоэлектрических батарей, тем более, что «севшие» фотоэлементы восстановить невозможно. Однако вряд ли какой-нибудь механический электрогенератор сможет продемонстрировать хотя бы 1% работоспособности всего лишь через 10 лет непрерывной работы — скорее всего он гораздо раньше потребует серьёзного ремонта из-за механического износа если не подшипников, то щёток, — а современные фотопреобразователи способны сохранять свою эффективность десятилетиями. По оптимистичным оценкам, за 25 лет КПД солнечной батареи уменьшается всего на 10%, а значит, если не вмешаются другие факторы, то даже через 100 лет сохранится почти 2/3 от первоначальной эффективности. Впрочем, для массовых коммерческих фотоэлементов на поли- и монокристаллическом кремнии честные изготовители и продавцы приводят несколько другие цифры старения — через 20 лет следует ожидать утраты до 20% эффективности (тогда теоретически через 40 лет эффективность составит 2/3 от первоначальной, сократится вдвое за 60 лет, а через 100 лет останется чуть менее 1/3 от исходной производительности). В общем, нормальный срок службы для современных фотопреобразователей составляет не менее 25 .. 30 лет, так что деградация не так критична, и гораздо важнее вовремя стирать с них пыль...

Если же батареи установить таким образом, чтобы естественное запыление практически отсутствовало либо своевременно смывалось естественными же дождями, то они смогут работать без какого-либо обслуживания в течение многих лет. Возможность столь долгой эксплуатации в необслуживаемом режиме — ещё одно важнейшее преимущество.

Наконец, солнечные батареи способны вырабатывать энергию с рассвета до заката даже в пасмурную погоду, когда тепловые солнечные коллекторы имеют температуру, лишь незначительно отличающуюся от температуры окружающего воздуха. Конечно, по сравнению с ясным солнечным днём их производительность падает во много раз, но лучше хоть что-то, чем совсем ничего! В связи с этим особенно интересны разработки батарей с максимумом преобразования энергии в тех диапазонах, где облака меньше всего поглощают солнечное излучение. Кроме того, при выборе солнечных фотопреобразователей следует обращать внимание на зависимость вырабатываемого ими напряжения от освещённости — она должна быть как можно меньшей (при снижении освещённости в первую очередь должен падать ток, а не напряжение, поскольку иначе для получения хоть какого-то полезного эффекта в пасмурные дни придётся использовать недешёвое дополнительное оборудование, принудительно повышающее напряжение до минимально достаточного для зарядки аккумуляторов и работы инверторов).

Недостатки солнечных батарей

Конечно, и недостатков у солнечных батарей немало. Помимо зависимости от погоды и времени суток, можно отметить следующее.

Невысокий КПД. Тот же солнечный коллектор при правильном выборе формы и материала поверхности способен поглотить почти всё попавшее на него солнечное излучение практически во всём спектре частот, несущих заметную энергию, — от дальнего инфракрасного до ультрафиолетового диапазона. Солнечные батареи же преобразуют энергию избирательно — для рабочего возбуждения атомов требуются определённые энергии фотонов (частоты излучения), поэтому в одних полосах частот преобразование идёт очень эффективно, а другие частотные диапазоны для них бесполезны. Кроме того, энергия уловленных ими фотонов используется квантово — её «излишки», превышающие нужный уровень, идут на вредный в данном случае нагрев материала фотопреобразователя. Во многом именно этим и объясняется их невысокий КПД.
Кстати, неудачно выбрав материал защитного покрытия, можно заметно снизить эффективность работы батареи. Дело усугубляется тем, что обычное стекло довольно хорошо поглощает высокоэнергетическую ультрафиолетовую часть диапазона, а для некоторых типов фотоэлементов весьма актуален именно этот диапазон, — энергия инфракрасных фотонов для них слишком мала.

Чувствительность к высокой температуре. С повышением температуры эффективность работы солнечных батарей, как и почти всех других полупроводниковых приборов, снижается. При температурах выше 100..125°С они вообще могут временно потерять работоспособность, а ещё больший нагрев грозит их необратимым повреждением. К тому же повышенная температура ускоряет деградацию фотоэлементов. Поэтому необходимо принимать все меры для снижения нагрева, неизбежного под палящими прямыми солнечными лучами. Обычно производители ограничивают номинальный диапазон рабочих температур фотоэлементов до +70°..+90°С (имеется в виду нагрев самих элементов, а температура окружающего воздуха, естественно, должна быть гораздо ниже).
Дополнительно осложняет ситуацию то, что чувствительная поверхность довольно хрупких фотоэлементов часто закрывается защитным стеклом или прозрачным пластиком. Если между защитным покровом и поверхностью фотоэлемента останется воздушная прослойка, то образуется своеобразный «парник», усугубляющий перегрев. Правда, увеличив расстояние между защитным стеклом и поверхностью фотоэлемента и соединив сверху и снизу эту полость с атмосферой, можно организовать конвекционный поток воздуха, естественным образом охлаждающий фотоэлементы. Однако на ярком солнце и при высокой температуре наружного воздуха этого может оказаться недостаточно, к тому же такой метод способствует ускоренному запылению рабочей поверхности фотоэлементов. Поэтому солнечная батарея даже не очень больших размеров может потребовать специальной системы охлаждения. Справедливости ради надо сказать, что подобные системы обычно легко автоматизируются, а привод вентилятора или помпы потребляет лишь малую долю вырабатываемой энергии. При отсутствии яркого солнца большого нагрева нет и охлаждение вообще не требуется, так что энергия, сэкономленная на приводе системы охлаждения, может быть использована для других целей. Следует заметить, что в современных панелях заводского изготовления защитное покрытие обычно плотно прилегает к поверхности фотоэлементов и отводит тепло наружу, но в самодельных конструкциях механический контакт с защитным стеклом может привести к повреждению фотоэлемента.

Чувствительность к неравномерности засветки. Как правило, для получения на выходе батареи напряжения, более-менее удобного для использования (12, 24 и более вольт), фотоэлементы соединяются в последовательные цепочки. Ток в каждой такой цепочке, а следовательно, и её мощность, определяется самым слабым звеном — фотоэлементом с худшими характеристиками или с наименьшей освещённостью. Поэтому если хотя бы один элемент цепочки оказывается в тени, он существенно снижает выработку всей цепочки — потери несоразмерны затенению (более того, при отсутствии защитных диодов такой элемент начнёт рассеивать мощность, вырабатываемую остальными элементами!). Избежать непропорционального снижения выработки можно, лишь соединив все фотоэлементы параллельно, однако тогда на выходе батареи будет слишком большой ток при слишком малом напряжении — обычно для отдельных фотоэлементов оно составляет всего 0.5 .. 0.7 В в зависимости от их типа и величины нагрузки.

Чувствительность к загрязнениям. Даже малозаметный слой грязи на поверхности фотоэлементов или защитного стекла может поглотить существенную долю солнечного света и заметно снизить выработку энергии. В пыльном городе это потребует частой очистки поверхности солнечных батарей, особенно установленных горизонтально или с небольшим наклоном. Безусловно, такая же процедура необходима и после каждого снегопада, и после пыльной бури... Однако вдали от городов, промышленных зон, оживлённых дорог и других сильных источников пыли при угле наклона 45° и более дожди вполне способны смывать естественное запыление с поверхности панелей, «автоматически» поддерживая их в достаточно чистом состоянии. Да и снег на таком уклоне, к тому же обращённом на юг, даже в весьма морозные дни обычно долго не задерживается. Так что вдали от источников атмосферных загрязнений панели солнечных батарей могут годами успешно работать вообще без какого-либо обслуживания, было бы солнце в небе!

Наконец, последнее, но важнейшее из препятствий для широкого и повсеместного распространения фотоэлектрических солнечных батарей — их довольно высокая цена. Себестоимость элементов солнечной батареи в настоящее время составляет минимум 1$/Вт (1 кВт —1000$), и это для малоэффективных модификаций без учёта стоимости сборки и монтажа панелей, а также без учёта цены аккумуляторов, контроллеров зарядки и инверторов (преобразователей вырабатываемого низковольтного постоянного тока к бытовому или промышленному стандарту). В большинстве случаев для минимальной оценки реальных затрат эти цифры следует умножить в 3-5 раз при самостоятельной сборке из отдельных фотоэлементов и в 6-10 раз при покупке готовых комплектов оборудования (плюс стоимость монтажа).

Из всех элементов системы энергоснабжения на фотоэлектрических батареях самый короткий срок службы имеют аккумуляторы, однако производители современных необслуживаемых аккумуляторов утверждают, что в так называемом буферном режиме они проработают порядка 10 лет (или отработают традиционные 1000 циклов сильной зарядки-разрядки — если считать по одному циклу в сутки, то в таком режиме их хватит на 3 года). Отмечу, что стоимость аккумуляторов обычно составляет лишь 10-20% от общей стоимости всей системы, а стоимость инверторов и контроллеров заряда (и то, и другое — сложные электронные изделия, и потому существует некоторая вероятность их выхода из строя) — ещё меньше. Таким образом, принимая во внимание длительный срок службы и возможность работы в течении долгого времени без какого-либо обслуживания, фотопреобразователи за свою жизнь вполне могут окупиться не один раз, и не только в отдалённых районах, но и в обжитых местностях — если тарифы на электричество продолжат расти нынешними темпами!

Солнечные тепловые коллекторы

Название «солнечные коллекторы» закрепилось за устройствами, использующими непосредственный нагрев солнечным теплом, — как одиночными, так и наращиваемыми (модульными). Простейший образец теплового солнечного коллектора — чёрный водяной бак на крыше вышеупомянутого дачного душа (кстати, эффективность нагрева воды в летнем душе можно заметно повысить, соорудив вокруг бака мини-парничок хотя бы из полиэтиленовой плёнки; желательно, чтобы между плёнкой и стенками бака сверху и сбоку оставался зазор в 4-5 см).

Однако современные коллекторы мало похожи на такой бак. Обычно они представляют собой плоские конструкции из тонких зачернённых трубок, уложенных в виде решётки или змейкой. Трубки могут крепиться на зачернённом же теплопроводящем листе-подложке, который улавливает солнечное тепло, попадающее в промежутки между ними — это позволяет уменьшить общую длину трубок без потери эффективности. Для снижения теплопотерь и повышения нагрева коллектор сверху может быть закрыт листом стекла или прозрачного сотового поликарбоната, а с обратной стороны теплораспределяющего листа бесполезные потери тепла предотвращает слой теплоизоляции — получается своеобразная «теплица». По трубке движется нагреваемая вода или другой теплоноситель, который может собираться в накопительном термоизолированном баке. Движение теплоносителя происходит под действием насоса или самотёком за счёт разности плотностей теплоносителя до и после теплового коллектора. В последнем случае для более-менее эффективной циркуляции требуется тщательный выбор уклонов и сечений труб и размещение самого коллектора как можно ниже. Но обычно коллектор размещается в тех же местах, где и солнечная батарея — на солнечной стене или на солнечном склоне крыши, правда дополнительно где-то надо разместить и накопительный бак. Без такого бака при интенсивном разборе тепла (скажем, если надо наполнить ванну или принять душ) ёмкости коллектора может не хватить, и через небольшое время из крана потечёт чуть подогретая водичка.

Защитное стекло, конечно, несколько снижает эффективность коллектора, поглощая и отражая несколько процентов солнечной энергии, даже если лучи падают перпендикулярно. Когда же лучи попадают на стекло под небольшим углом к поверхности, коэффициент отражения может приближаться к 100%. Поэтому при отсутствии ветра и необходимости лишь небольшого нагрева относительно окружающего воздуха (на 5-10 градусов, скажем, для полива огорода) «открытые» конструкции могут быть более эффективны, чем «остеклённые». Но как только требуется разность температур в несколько десятков градусов или если поднимается даже не очень сильный ветер, теплопотери открытых конструкций стремительно возрастают, и защитное стекло при всех своих недостатках становится необходимостью.

Важное замечание — необходимо учитывать, что в жаркий солнечный день при отсутствии разбора вода может перегреться выше температуры кипения, поэтому в конструкции коллектора необходимо принять соответствующие меры предосторожности (предусмотреть предохранительный клапан). В открытых коллекторах без защитного стекла такого перегрева обычно можно не опасаться.

В последнее время начинают широко использоваться солнечные коллекторы на так называемых тепловых трубках (не путать с «тепловыми трубками», применяемыми для отвода тепла в системах охлаждения компьютеров!). В отличие от рассмотренной выше конструкции, здесь каждая нагреваемая металлическая трубка, по которой циркулирует теплоноситель, впаяна внутрь стеклянной трубки, а из промежутка между ними откачан воздух. Получается аналог термоса, где за счёт вакуумной теплоизоляции теплопотери уменьшаются в 20 раз и более. В результате, по утверждению производителей, при морозе в -35°С снаружи стекла, вода во внутренней металлической трубке со специальным покрытием, поглощающим максимально широкий спектр солнечного излучения, нагревается до +50..+70°С (перепад более 100°С).Эффективное поглощение в сочетании с отличной теплоизоляцией позволяют нагревать теплоноситель даже в пасмурную погоду, хотя мощность нагрева, конечно, в разы меньше, чем при ярком солнце. Ключевым моментом здесь является обеспечение сохранности вакуума в зазоре между трубками, то есть вакуумной герметичности стыка стекла и металла, в очень широком диапазоне температур, достигающем 150°С, в течение всего срока эксплуатации, составляющего многие годы. По этой причине при изготовлении таких коллекторов не обойтись без тщательного согласования коэффициентов температурного расширения стекла и металла и высокотехнологичных производственных процессов, а значит, в кустарных условиях вряд ли удастся сделать полноценную вакуумную тепловую трубку. Но более простые конструкции коллекторов без проблем изготавливаются самостоятельно, хотя, конечно, их эффективность несколько меньше, особенно зимой.

Помимо описанных выше жидкостных солнечных коллекторов, существуют и другие интересные типы конструкций: воздушные (теплоноситель — воздух, и замерзание ему не страшно), «солнечные пруды» и пр. К сожалению, большинство исследований и разработок по солнечным коллекторам посвящено именно жидкостным моделям, поэтому альтернативные виды серийно практически не производятся и сведений о них не так уж много.

Достоинства солнечных коллекторов

Важнейшее достоинство солнечных коллекторов — простота и относительная дешевизна изготовления их вполне эффективных вариантов, сочетающаяся с неприхотливостью в эксплуатации. Необходимый минимум для того, чтобы сделать коллектор своими руками — это несколько метров тонкой трубы (желательно медной тонкостенной — её можно согнуть с минимальным радиусом) и немного чёрной краски, хотя бы битумного лака. Сгибаем трубку змейкой, красим чёрной краской, размещаем в солнечном месте, подключаем к водяной магистрали, — и вот простейший солнечный коллектор уже готов! При этом змеевику легко можно придать почти любую конфигурацию и максимально использовать всё выделенное для коллектора место. Наиболее эффективным зачернением, которое можно нанести в кустарных условиях и которое к тому же очень устойчиво к высоким температурам и прямому солнечному свету, является тонкий слой сажи. Однако сажа легко стирается и смывается, потому для такого зачернения обязательно потребуется защитное стекло и специальные меры, чтобы предотвратить возможное попадание конденсата на покрытую сажей поверхность.

Другое важнейшее достоинство коллекторов заключается в том, что в отличии от солнечных батарей, они способны уловить и преобразовать в тепло до 90% попавшего на них солнечного излучения, а в самых удачных случаях — и более. Поэтому не только в ясную погоду, но и при лёгкой облачности КПД коллекторов превосходит КПД фотоэлектрических батарей. Наконец, в отличие от фотоэлектрических батарей, неравномерность засветки поверхности не вызывает непропорционального снижения эффективности коллектора — важен лишь общий (интегральный) поток излучения.

Недостатки солнечных коллекторов

Зато солнечные коллекторы более чувствительны к погоде, чем солнечные батареи. Даже на ярком солнце свежий ветер способен во много раз снизить эффективность нагрева открытого теплообменника. Защитное стекло, конечно, резко сокращает потери тепла от ветра, но в случае плотной облачности и оно бессильно. В пасмурную ветреную погоду толку от коллектора практически нет, а солнечная батарея хоть немного энергии, да вырабатывает.

Среди других недостатков солнечных коллекторов прежде всего выделю их сезонность. Достаточно коротких весенних или осенних ночных заморозков, чтобы образовавшийся в трубах нагревателя лёд создал опасность их разрыва. Конечно, это можно исключить, подогревая холодными ночами «тепличку» со змеевиком сторонним источником тепла, однако в таком случае общая энергетическая эффективность коллектора легко может стать отрицательной! Другой вариант — двухконтурный коллектор с антифризом во внешнем контуре — не потребует расхода энергии на подогрев, но будет намного сложнее одноконтурных вариантов с прямым нагревом воды как в изготовлении, так и при эксплуатации. Воздушные конструкции в принципе не могут замёрзнуть, но там есть другая проблема — низкая удельная теплоёмкость воздуха.

И всё же, пожалуй, главный недостаток солнечного коллектора заключается в том, что он является именно нагревательным прибором, причём хотя промышленно изготовленные образцы при отсутствии разбора тепла могут нагреть теплоноситель до 190..200°С, обычно достигаемая температура редко превышает 60..80°С. Поэтому использовать добытое тепло для получения существенных объёмов механической работы или электрической энергии весьма затруднительно. Ведь даже для работы самой низкотемпературной паро-водяной турбины (например той, которую в своё время описал В.А.Зысин) необходимо перегреть воду хотя бы до 110°С! А непосредственно в виде тепла энергия, как известно, долго не хранится, да и при температуре менее 100°С её обычно можно использовать лишь в горячем водоснабжении и отоплении дома. Впрочем, с учётом низкой стоимости и простоты изготовления это может быть вполне достаточной причиной для обзаведения собственным солнечным коллектором.

Справедливости ради нужно отметить, что «нормальный» рабочий цикл тепловой машины можно организовать и при температурах ниже 100°С — либо если температуру кипения понизить, снижая давление в испарительной части с помощью откачки оттуда пара, либо использовав жидкость, температура кипения которой лежит между температурой нагрева солнечного коллектора и температурой окружающего воздуха (оптимально — 50..60°С). Правда, я могу вспомнить лишь одну не экзотическую и относительно безопасную жидкость, более-менее удовлетворяющую этим условиям — это этиловый спирт, в нормальных условиях кипящий при 78°С. Очевидно, что в таком случае обязательно придётся организовывать замкнутый цикл, решая множество связанных с этим проблем. В некоторых ситуациях перспективным может быть применение двигателей с внешним нагревом (двигателей Стирлинга). Интересным в этом плане может быть и использование сплавов с эффектом памяти формы, о которых на этом сайте рассказано в статье И.В.Найгеля — им для работы достаточно температурного перепада всего в25-30°С.

Концентрация солнечной энергии

Повышение эффективности солнечного коллектора прежде всего заключается в устойчивом повышении температуры нагреваемой воды выше температуры кипения. Для этого обычно применяется концентрация солнечной энергии на коллекторе с помощью зеркал. Именно такой принцип лежит в основе большинства солнечных электростанций, различия заключаются лишь в количестве, конфигурации и размещении зеркал и коллектора, а также в методах управления зеркалами. В результате в точке фокусировки вполне возможно достижение температуры даже не в сотни, а в тысячи градусов, — при такой температуре уже может происходить прямое термическое разложение воды на водород и кислород (полученный водород можно сжигать ночью и в пасмурные дни)!

К сожалению, эффективная работа подобной установки невозможна без сложной системы управления зеркалами-концентраторами, которые должны отслеживать постоянно изменяющееся положение Солнца на небе. В противном случае уже через несколько минут точка фокусировки покинет коллектор, который в таких системах часто имеет весьма небольшие размеры, и нагрев рабочего тела прекратится. Даже использование зеркал-параболоидов решает проблему лишь частично — если их периодически не доворачивать вслед за Солнцем, то через несколько часов оно уже не будет попадать в их чашу или станет освещать лишь её край — толку от этого будет немного.

Самый простой способ концентрации солнечной энергии в «домашних» условиях — это горизонтально положить зеркало возле коллектора так, чтобы большую часть дня «солнечный зайчик» попадал на коллектор. Интересный вариант — использовать в качестве такого зеркала поверхность специально созданного возле дома водоёма, особенно если это будет не обычный водоём, а «солнечный пруд» (хотя сделать это непросто, а эффективность отражения будет гораздо меньше, чем у обычного зеркала). Хороший результат может дать создание системы вертикальных зеркал-концентраторов (эта затея обычно гораздо более хлопотная, но в некоторых случаях вполне оправданной может оказаться простая установка большого зеркала на соседней стене, если она образует с коллектором внутренний угол, — всё зависит от конфигурации и местоположения здания и коллектора).

Перенаправление солнечного излучения с помощью зеркал может повысить и выработку фотоэлектрической батареи. Но при этом возрастает её нагрев, а он может вывести батарею из строя. Поэтому в данном случае приходится ограничиваться относительно небольшим выигрышем (на несколько десятков процентов, но не в разы), и нужно тщательно контролировать температуру батареи, особенно в жаркие ясные дни! Именно из-за опасности перегрева некоторые производители фотоэлектрических батарей прямо запрещают эксплуатацию своих изделий при повышеной освещённости, созданной с помощью дополнительных отражателей.

Преобразование солнечной энергии в механическую

Традиционные типы солнечных установок не подразумевают непосредственного получения механической работы. К солнечной батарее на фотопреобразователях для этого надо подключить электродвигатель, а при использовании теплового солнечного коллектора перегретый пар (а для перегрева вряд ли удастся обойтись без зеркал-концентраторов) надо подать на вход паровой турбины или в цилиндры паровой машины. Коллекторы с относительно небольшим нагревом могут преобразовывать тепло в механическое движение более экзотическими способами, например с помощью актуаторов из сплавов с эффектом памяти формы .

Тем не менее, существуют и установки, предполагающее преобразование солнечного тепла в механическую работу, непосредственно заложенное в их конструкцию. Причём размеры и мощность их самые разные — это и проект огромной солнечной башни высотой в сотни метров, и скромный солнечный насос, которому самое место на дачном участке.

На земле существует большое количество альтернативных источников энергии, каждый из которых имеет свои особенности при использовании. И одним из самых экологичных является энергия солнечного света. На самом деле ею человечество пользуется из самых древних времен и в различной форме:

  • Летом используется тепло солнечных лучей для нагрева теплиц и создания оптимальных условий для их развития.
  • Под лучами солнца человек сушил морепродукты, грибы, целебные травы и прочее.
  • При конструировании солнечных печей можно вскипятить воду с использованием системы зеркал.

Все это непостоянно, нагретые солнцем за день предметы ночью быстро остывают. Человечество долго думало о том, как бы сохранить эту энергию и только в XXI-ом столетии стало использовать ее для накопления в виде тепла и электричества. Получение электрической мощности из солнечного излучения – это довольно действенный способ, который сегодня используется для до небольших поселений или комплексов. И даже учитывая крайне небольшое время качественного солнечного излучения, популярность использования панелей не утихает. Но чтобы определить целесообразность этого генератора, необходимо посчитать мощность солнечных батарей. Об этом речь пойдет ниже в статье, прежде необходимо ознакомиться с понятием «солнечное излучение».

Что такое солнечная энергия?

Солнечная энергия – на самом деле это огромная сила, но чтобы ее получить, необходимо приложить немало усилий. Все дело в том, что технологии изготовления солнечных генераторных панелей имеют высокую цену и порой при расчете выгоды может оказаться так, что установка таких у себя дома будет окупаться на протяжении десятков лет, при условии постоянно ясных дней. А на самом деле эта цифра увеличится как минимум в 5 раз, и выгода будет заметна только вашим внукам или правнукам. И то, если конструкция панелей будет надежна и сможет столько прослужить. В идеальном расчете современные солнечные батареи могут выдавать до 1,35 кВт/м кв. и для получения 10 кВт потребуется всего 7,5 кв. м панелей. Но это в идеальных условиях. В реальности — площади солнечных батарей потребуется в 5-6 раз больше для получения той же мощности.

Современные солнечные панели обладают не так уж и большим КПД. Фотоэлемент, площадью 1 кв. м выдает в идеальных условиях 1 кВт электрической энергии. Но это условие справедливо, если расстояние от поверхности панели минимально, солнце находиться над ней, лучи – строго перпендикулярно к плоскости и прозрачность атмосферы составляет не менее 100%. Таким условиям соответствует лишь вершина горы в тропической зоне и ясную погоду. В нашей климатической зоне можно добиться максимум 20%, следовательно, с 1 кв. м можно получить от 150 до 600 Вт электрической энергии. Все дело в том, что интенсивность солнца в наших широтах весьма мала. К примеру, рассматривая российские города от Архангельска до Южно-Сахалинска, за месяц эксплуатации солнечной батареи можно получить максимум 209.9 кВтч/м кв. И то, эта цифра справедлива только в Сочи. При установке солнечной панели в Архангельске, месячный максимум получится не более 159.7 кВтч/м кв.

В средних широтах, в которых собственно мы с вами и проживаем, показатель мощности солнечной энергии соответствует уровню 100 Вт/кв. м. Но и эти данные весьма неточные, при повышенной облачности эта цифра будет уменьшаться до 2 и более раз.

Виды солнечного излучения.

В зависимости от потока излучение разделяется на 2 вида: рассеянное и прямое. В зависимости от вида освещения выбирается угол наклона панели, тем самым повышая КПД установки. При прямом излучении угол должен быть строго определен, при рассеянном этот показатель не важен, потому что интенсивность освещения во всех точках пространства примерно равна. Но между двумя этими разновидностями имеется существенное отличие, заключающееся в . В первом случае она многократно раз превышает второй, обеспечивая панель мощным потоком фотонов. Но таких ясных деньков в наших широтах, да и по всей планете, не так уж и много, поэтому производителям панелей приходиться использовать весь научно-технический потенциал, чтобы получить максимум энергии из того излучения. Такие технологии станут многим не по карману, не говоря уже о сроке окупаемости, который может стать непостижимым на нашем веку.

Как распределяется энергия в солнечном спектре?

Солнце представляет собой универсальный генератор, который вырабатывает потоки световой энергии не только различной мощности, но и различной частоты, что говорит о возможности разложения солнечного света в спектр. Весь его охватить не удастся, потому что принимающее тело должно быть идеально черного цвета. Тем более что не все виды излучений доходят до поверхности земли. Самые активные и энергонесущие потоки поглощаются другими телами в космосе и атмосфере. Задачей человечества стало определение диапазона частот, в котором поток световой энергии максимален. Традиционно спектр раскладывается не по частотам, а по длинам волн. И его грубо можно разделить на 3 зоны:

  • Ультрафиолетовая, ей соответствуют длины волн от 0 до 380 мкм.
  • Видимый свет, находиться в диапазоне от 380 до 760 мкм.
  • Инфракрасный, соответствует участку с длинами волн от 760 до 3300 мкм.

Зоной, где энергия фотонов самая высокая, является именно первый диапазон, но в нем частиц ничтожно мало, по сравнению с видимым диапазоном света. Поэтому для получения электрической энергии стали использовать именно видимый и инфракрасный диапазоны с длинами волн от 380 до 1800 мкм. Все, что выше относится к радиочастотному диапазону и энергия здесь также мала, по причине практически полного отсутствия энергии фотонов, несмотря на их большое количество.

Можно пойти и простым путем, ориентировать солнечную батарею в одной плоскости под определенным углом. Например, для Москвы, которая расположена на 56 градусах широты, угол наклона к горизонту составит, соответственно, 56 градусов или отклонения от вертикали на 34 градуса. Тогда потребуется лишь обеспечить панели вращением в одной плоскости и возврат ее в исходную точку. Все это удорожает систему и делает ее менее надежной.

При конструировании системы поворота панелей большое значение имеет вес рамы, на которой будут располагаться фотоэлементы. И как следствие получается, что на вращение требуется много энергии, что снижает количество полезной энергии.

Выбор фотоэлектрической системы для построения солнечного генератора.

Для построения действительно качественного солнечного генератора необходимо учесть следующие данные:

  • Среднее значение коэффициента полезного действия имеющихся в продаже солнечных панелей. У кремниевых батарей он лежит в пределах от 12 до 17% при условии использования кристаллического материала, КПД тонкопленочных батарей лежит в пределах от 8 до 12%.
  • Мощность солнечной панели, вырабатываемой одним квадратным метром панели. Для ее определения необходимо солнечную энергию умножить на КПД одной панели с преобразованием в целое число.
  • Пиковая мощность – измеряется в безоблачный солнечный день и равна произведению КПД и величине «Стандартного солнца» (1 кВт).
  • Суммарная усредненная энергия. Рассчитывается как произведение пиковой мощности и количества часов инсоляции.
  • Выработанная энергия – это величина мощности, которую панель отдала в нагрузку в фактических условиях за 24 час. Определяется как соотношение суммарной усредненной энергии к 24 часам. Для панелей из кристаллического кремния эта величина равна 0.6-0.85 кВт/м кв., для пленочного кремния – 0.4-0.6 кВт/м кв.
  • Общая энергия – количество мощности, выработанной панелью за год эксплуатации, и рассчитывается как произведение как полная энергия и количество дней в году. Для кристаллических панелей (CSi) – 219-310 кВт ч, для пленочных (TF) – 146-219 кВт ч. Но при расчете окончательных показателей необходимо учесть потери в импульсном преобразователе, которые составляют обычно 5%.
  • Цена электрической энергии. Пожалуй, самый главный показатель, который зачастую предопределяет целесообразность приобретения солнечного генератора. На сегодняшний день такой генератор пока еще нецелесообразен, так как без поломок более 10 лет практически ничто не прослужит. Но технологии не стоят на месте, и в скором будущем стоимость световых генераторных панелей станет намного меньше, сделав их доступными для всех.

Введение

Солнце, как известно, является первичным и основным источником энергии для нашей планеты. Оно греет всю Землю, приводит в движение реки и сообщает силу ветру. Под его лучами вырастает 1 квадриллион тонн растений, питающих, в свою очередь, 10 триллионов тонн животных и бактерий. Благодаря тому же Солнцу на 3емле накоплены запасы углеводородов, то есть нефти, угля, торфа и пр., которые мы сейчас активно сжигаем. Для того чтобы сегодня человечество смогло удовлетворить свои потребности в энергоресурсах, требуется в год около 10 миллиардов тонн условного топлива. (Теплота сгорания условного топлива - 7 000 ккал/кг).

Задачи:

· рассмотреть основные физические принципы и явления;

· сформировать знания и умения, позволяющие проводить теоретический расчет основных параметров;

· рассмотреть достоинства и недостатки использования солнечной энергетики

· рассмотреть способы получения электричества и тепла из солнечного излучения

Солнечная энергетика - использование солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует возобновляемый источник энергии и в перспективе может стать экологически чистой, то есть не производящей вредных отходов.

Солнечное излучение является практически неисчерпаемым источником энергии, оно поступает во все уголки Земли, находится "под рукой" у любого потребителя и является экологически чистым доступным источником энергии.

Использование солнечного света и тепла - чистый, простой, и естественный способ получения всех форм необходимой нам энергии. При помощи солнечных коллекторов можно обогреть жилые дома и коммерческие здания или обеспечить их горячей водой. Солнечный свет, сконцентрированный параболическими зеркалами (рефлекторами), применяют для получения тепла (с температурой до нескольких тысяч градусов Цельсия). Его можно использовать для обогрева или для производства электроэнергии. Кроме этого, существует другой способ производства энергии с помощью Солнца - фотоэлектрические технологии. Фотоэлектрические элементы - это устройства, которые преобразовывают солнечную радиацию непосредственно в электричество.

СОЛНЕЧНАЯ ЭНЕРГИЯ

Энергия Солнца является источником жизни на нашей планете. Солнце нагревает атмосферу и поверхность Земли. Благодаря солнечной энергии дуют ветры, осуществляется круговорот воды в природе, нагреваются моря и океаны, развиваются растения, животные имеют корм. Именно благодаря солнечному излучению на Земле существуют ископаемые виды топлива. Солнечная энергия может быть преобразована в теплоту или холод, движущую силу и электричество.

Солнечная радиация

Солнечная радиация - это электромагнитное излучение, сосредоточенное в основном в диапазоне волн длиной 0,28…3,0 мкм. Солнечный спектр состоит из:

Ультрафиолетовых волн длиной 0,28…0,38 мкм, невидимых для наших глаз и составляющих приблизительно 2 % солнечного спектра;

Световых волн в диапазоне 0,38 … 0,78 мкм, составляющих приблизительно 49 % спектра;

Инфракрасных волн длиной 0,78…3,0 мкм, на долю которых приходится большая часть оставшихся 49 % солнечного спектра. Остальные части спектра играют незначительную роль в тепловом балансе Земли.

Сколько солнечной энергии попадает на Землю?

Солнце излучает огромное количество энергии - приблизительно 1,1x10 20 кВт ч в секунду. Киловатт·час - это количество энергии, необходимое для работы лампочки накаливания мощностью 100 ватт в течение 10 часов. Внешние слои атмосферы Земли перехватывают приблизительно одну миллионную часть энергии, излучаемой Солнцем, или приблизительно 1500 квадрильонов (1,5 x 10 18) кВт·ч ежегодно. Однако из-за отражения, рассеивания и поглощения ее атмосферными газами и аэрозолями только 47% всей энергии, или приблизительно 700 квадрильонов (7 x 10 17) кВт·ч, достигает поверхности Земли.

Солнечное излучение в атмосфере Земли делится на так называемое прямое излучение и на рассеянное, на частицах воздуха, пыли, воды, и т.п., содержащихся в атмосфере. Их сумма образует суммарное солнечное излучение.

Количество энергии, падающей на единицу площади в единицу времени, зависит от ряда факторов: широты местного климата, сезона года, угла наклона поверхности по отношению к Солнцу.

Время и место

Количество солнечной энергии, падающей на поверхность Земли, изменяется вследствие движения Солнца. Эти изменения зависят от времени суток и времени года. Обычно в полдень на Землю попадает больше солнечной радиации, чем рано утром или поздно вечером. В полдень Солнце находится высоко над горизонтом, и длина пути прохождения лучей Солнца через атмосферу Земли сокращается. Следовательно, меньше солнечной радиации рассеивается и поглощается, а значит, больше достигает поверхности.

Количество солнечной энергии, достигающей поверхности Земли, отличается от среднегодового значения: в зимнее время - менее чем на 0,8 кВт·ч/м 2 в день на Севере Европы и более чем на 4 кВт·ч /м 2 в день в летнее время в этом же регионе. Различие уменьшается по мере приближения к экватору.

Количество солнечной энергии зависит и от географического месторасположения участка: чем ближе к экватору, тем оно больше. Например, среднегодовое суммарное солнечное излучение, падающее на горизонтальную поверхность, составляет: в Центральной Европе, Средней Азии и Канаде - приблизительно 1000 кВт·ч/м 2 ; в Средиземноморье - приблизительно 1700 кВт·ч /м 2 ; в большинстве пустынных регионов Африки, Ближнего Востока и Австралии - приблизительно 2200 кВт·ч/м 2 .

Таким образом, количество солнечной радиации существенно различается в зависимости от времени года и географического положения. Этот фактор необходимо учитывать при использовании солнечной энергии.


Мощность и КПД солнечных батарей: 10 лучших производителей устройств. Мощность солнечных батарей на квадратный метр

В сегодняшней статье мы поговорим с вами о том, как правильно рассчитать мощность солнечной батареи для дома и дачи. Итак, вы приняли решение установить на своём загородном доме или дачном участке солнечные батареи, дабы стать независимым от общей электрической сети, всегда иметь в доме электричество, а также сэкономить на оплате квитанций по коммунальным платежам.

Что ж это решение верно. Но, чтобы солнечные модули действительно принесли вам выгоду, надо предварительно в обязательном порядке правильно подобрать мощность солнечных батарей. А для этого следует взять листок и ручку и произвести необходимые подсчёты либо обратиться к грамотным специалистам, которые подберут вам необходимое оборудование, ориентируясь на ваши запросы.

Не важно, где вы хотите установить солнечные модули: в собственном доме или на даче. Первое, что следует сделать – это подсчитать, сколько вам необходимо электрической энергии в месяц и в сутки в среднем. Есть два варианта подсчёта: зафиксировать данные электросчётчика. Желательно записать данные за несколько месяцев, чтобы получить более точное усредненное значение. Либо подсчитать сумму мощности всех электроприборов, установленных в вашем доме. Мощность каждого из них можно посмотреть в технической документации или в интернете.

Итак, берем мощность каждого отдельного прибора и умножаем ее на время работы в сутки. Таким образом, мы получим данные по каждому прибору. Затем необходимо сложить эти данные и получим итоговую цифру, на которую будем ориентироваться. Необходимо помнить о том, что, если вы планируете установку контроллера и инвертора для солнечных панелей, то их также следует учитывать при определении суммы потребляемой вами электроэнергии.

Приведем пример: допустим, у вас есть следующие бытовые приборы: холодильник, телевизор, ноутбук, стиральная машинка, электрический котёл, утюг и некоторые другие вспомогательные приборы. Также ваш дом оборудован 10 энергосберегающими лампочками.

Потребитель Мощность Время работы за сутки Потребление за сутки Сезонность работы
Освещение 200 Вт Максимум 10 часов 2 кВт*ч Круглый год
Холодильник 500 Вт Максимум 3 часа 1,5 кВт*ч Круглый год
Ноутбук 100 Вт Максимум 5 часов 0,5 кВт*ч Круглый год
Стиральная машина 500 Вт Максимум 6 часов 3 кВт*ч Круглый год
Утюг 1500 Вт Максимум 1 час 1,5 кВт*ч Круглый год
Телевизор 150 Вт Максимум 5 часов 0,8 кВт*ч Круглый год
Электрический котёл (150 литров) 1,2 кВт Максимум 5 часов 6 кВт*ч Круглый год
Инвертор 20 Вт 24 часа 0,5 кВт*ч Круглый год
Контроллер 5 Вт 24 часа 0,1 кВт*ч Круглый год

Итак берем калькулятор и проводим вычисление, на питание основных потребителей электроэнергии вам необходимо 15,9 кВт*ч энергии в сутки. Добавим сюда работу дополнительных приборов, таких как электрический чайник, насос, кухонный комбайн, пылесос, фен и т.д. И получим среднюю цифру в 20 кВт*ч в сутки. На месяц вам необходимо 600 кВт*ч энергии. А это значит, что солнечные панели должны вырабатывать столько энергии для того, чтобы покрыть ваши текущие расходы. Конечно, если вы планируете установку солнечных панелей для дачи, так вам потребуется намного меньше электрической энергии. Тем более, если вы используете ее только посезонно, например, только в летний период.

О чём говорит мощность солнечной батареи? Пример расчета, вы выбрали солнечный модуль с мощностью в 240 Вт. На деле, это означает, что данная солнечная батарея выдаст вам 240 Вт энергии солнца при инсоляции 1000 Вт*м2. Конечно, солнечные лучи не падают на батареи круглые сутки и сезонность работы такой батареи также играет свою роль. Зимой батарея работает 4-6 часов. А, значит, максимально она может выработать 1440 Вт*ч электроэнергии. Летом батарея работает максимум 8-10 часов. Таким образом, максимальный показатель электроэнергии составит 2400 Вт*ч. Это идеальный случай, когда солнечная батарея постоянно выдает свою максимальную мощность. В реальности нужно учитывать уровень инсоляции.

Помните о том, что солнечные батареи вырабатывают энергию из полученных солнечных лучей. А значит, чем больше света попадёт на батареи, тем больше энергии она способна выработать. Максимальное количество энергии модуль выработает тогда, когда солнечные лучи падают на него под углом в 90° и при безоблачном небе. В темное время суток энергия не вырабатывается, т.к. нет солнца. Поэтому необходимо установить аккумуляторные батареи, где в дневное время энергия будет скапливаться, а затем равномерно расходоваться в течение суток.

Во время пасмурной погоды работоспособность любой солнечной системы падает в среднем на 15-20%. Аналогично, выработка снижается в вечерние и утренние часы, когда интенсивность излучения падает, а угол падения солнечных лучей на поверхность панелей наименее оптимален.

При подборе необходимого вам оборудования следует также учитывать еще один немаловажный фактор: это уровень инсоляции именно вашего региона. Уровень инсоляции показывает, сколько конкретно энергии солнца попадает на отдельную единицу площади солнечного модуля. Может случиться так, что вы живете в таком городе, где солнечного света недостаточно, а значит те панели, которые вы выбрали для покупки, не смогут работать на всю свою заявленную мощность.

Уровень инсоляции индивидуален для каждого региона нашей страны. Найти необходимые цифры можно в специализированных справочниках, а также на разнообразных метеорологических сайтах. Для крупных городов сегодня можно найти актуальные данные по всем месяцам года. Понятно, что наибольший уровень инсоляции будет зафиксирован в летнее время, а зимой уровень инсоляции, конечно, существенно, снижается.

Итак, у вас есть данные по уровню инсоляции вашего региона, а также то, сколько энергии вы потребляете в сутки. Теперь возможно подсчитать, сколько панелей вам необходимо установить для полноценной работы всех электроприборов в доме.

Для начала необходимо норму по электроэнергии разделить на показатель инсоляции каждого конкретного месяца. Очень важно рассчитать все по месяцам, ведь уровень инсоляции в разные месяца существенно отличается.

Полученную цифру делим на мощность той установки, которую вы решите приобрести (эти данные можно посмотреть в техническом паспорте либо в Интернете). Таким образом, получаем искомую цифру. Приведём конкретный пример.

Допустим, в сутки вам необходимо 20 кВт*ч электроэнергии. Инсоляция в вашем регионе в июле (Москва) – 5,3 кВт*ч на квадратный метр площади. Мощность одной выбранной вами солнечной батареи составляет 240 Вт или 0,24 кВт. Итого: 20/5,3/0,24 = 15,7 солнечных панелей заявленной мощности вам потребуется.

Если вы планируете покупку солнечных панелей только для дачи, то там, в среднем, вам потребуется 5 Квт*ч*сутки электроэнергии. Возьмём панели мощностью 185 Вт или 0,185 кВт. Итого 5/5,3/0,185 = 5 панелей заявленной мощности необходимо будет установить.

Что можно сделать, чтобы повысить эффективность работы солнечных батарей:

Заменить в доме все обычные лампы накаливания на энергосберегающие;

Использовать бытовые приборы только класса А, А++, А+++.

Избегать затенения солнечного оборудования;

Правильно устанавливать угол наклона солнечных батарей в зависимости от вашего региона и времени года;

Своевременно очищать оборудование от пыли, грязи, особенно - наледи и снега, если вы используете солнечные модули в зимний период;

Правильно произвести монтаж оборудования, чтобы достигнуть максимальной производительности.

gws-energy.ru

эффективность панелей, мощность излучения на квадратный метр, самые эффективные

Эффективность солнечных батарей, как правило, рассчитывают с учетом КПД установки Солнечные батареи – это уникальная система, позволяющая преобразовывать солнечные лучи в электрическую и тепловую энергию. Растущий спрос на гелиопродукцию, на сегодня, обуславливается ее быстрой окупаемостью и долговечностью, доступностью теплоносителя. Но, какое напряжение способны вырабатывать солнечные батареи? О том, насколько эффективны гелиосистемы, и от чего зависит коэффициент их полезного действия – читайте в статье.

Солнечные батареи с высоким КПД: виды преобразователей

КПД солнечный батарей – это величина, которая равняется отношению мощности электроэнергии к мощности падающих на панель устройства солнечных лучей. Современные солнечные батареи обладают КПД в диапазоне от 10 до 45%. Такая большая разница обуславливается различиями между материалами изготовления и конструкцией пластин батарей.

Так, пластины солнечных батарей могут быть:

  • Тонкопленочными;
  • Многопереходными.

Солнечные батареи последнего типа, на сегодня, являются наиболее дорогими, но и наиболее продуктивными. Это связано с тем, что каждый переход в пластине поглощает волны с определенной длиной. Таким образом, устройство охватывает весь спектр солнечных лучей. Максимальный КПД батарей с многопереходными панелями, полученный в лабораторных условиях, составляет 43,5%.

Энергетики с уверенностью заявляют, что через несколько лет этот показатель возрастет до 50%. КПД тонкопленочных пластин зависит, в большей степени, от материала их изготовления.

Так, тонкопленочные солнечные батареи делятся на такие виды:

  • Кремниевые;
  • Кадмиевые.

Наиболее популярными солнечными батареями, которые можно использовать в бытовых целях, считаются установки с кремниевыми пленочными пластинами. Объем таких устройств на рынке составляет 80%. Их КПД достаточно низкий – всего 10%, но они отличаются доступностью и надежностью. На несколько процентов показатель полезного действия выше у кадмиевых пластин. Пленки с частицами селенида, меди, индия и галлия имеют более высокий КПД, который равняется 15%.

От чего зависит эффективность солнечных батарей

На КПД фотоэлектрических преобразователей влияет масса факторов. Так, как было отмечено выше, количество вырабатываемой энергии зависит от структуры панели преобразователя, материала их изготовления.

Кроме того, эффективность солнечных преобразователей зависит от:

  • Силы солнечного излучения. Так, при снижении солнечной активности, мощность гелиоустановок снижается. Чтобы батареи обеспечивали потребителя энергией и в ночное время, их снабжают специальными аккумуляторами.
  • Температуры воздуха. Так, солнечные батареи с охлаждающими устройствами являются более продуктивными: нагрев панелей негативно сказывается на их способности преобразовывать энергию в ток. Так, в морозную ясную погоду КПД гелиобатарей выше, нежели в солнечную и жаркую.
  • Угла наклона устройства и падения солнечных лучей. Для обеспечения максимальной эффективности, панель солнечной батареи должна быть направлена строго под солнечное излучение. Наиболее эффективными считаются модели, уровень наклона которых можно менять относительно расположения Солнца.
  • Погодных условий. На практике отмечено, что в районах с пасмурной, дождливой погодой эффективность солнечных преобразователей значительно ниже, нежели в солнечных регионах.

Кроме того, на эффективность солнечных преобразователей влияет и уровень их чистоты. Для того, чтобы устройство могло работать продуктивно, его пластины должны потреблять как можно больше солнечного излучения. Сделать это можно лишь в том случае, если приборы чистые.

Скопление на экране снега, пыли и грязи может уменьшить КПД устройства на 7%.

Мыть экраны рекомендуется 1-4 раза в год в зависимости от степени загрязнений. При этом, для очистки можно использовать шланг с насадкой. Технический осмотр преобразовательных элементов следует проводить раз в 3-4 месяца.

Мощность солнечных батарей на квадратный метр

Как было замечено выше, в среднем, один квадратный метр фотоэлектрических преобразователей обеспечивает выработку 13-18% от мощности попадающих на него солнечных лучей. То есть, при самых благоприятных условиях, с квадратного метра солнечных батарей можно получить 130-180 Вт.

Мощность гелиосистем можно увеличивать, наращивая панели и увеличивая площадь фотоэлектрических преобразователей.

Получить большую мощность можно и, установив панели с более высоким КПД. Тем не менее, достаточно низкий (в сравнении, например, с индукционными преобразователями) коэффициент полезного действия доступных солнечных батарей является главной преградой на пути к их широкому использованию. Увеличение мощности и КПД гелиосистем является первостепенными задачами современной энергетики.

Самые эффективные солнечные батареи: рейтинг

Наиболее эффективные солнечные преобразователи, на сегодня, производит фирма Sharp. Трехслойные, мощные, концентрирующие солнечные панели имеют эффективность в 44,4%. Стоимость их невероятно высока, поэтому они нашли применение лишь в авиационно-космической промышленности.

Наиболее доступными и эффективными являются современные солнечные батареи от компаний:

  • Panasonic Eco Solutions;
  • First Solar;
  • MiaSole;
  • JinkoSolar;
  • Trina Solar;
  • Yingli Green;
  • ReneSola;
  • Canadian Solar.

Компания Sun Power производят самые надежные солнечные преобразователи с КПД в 21,5%. Продукция этой компании пользуется абсолютной популярностью на коммерческих и производственных объектах, уступая, разве что, устройствам от Q-Cells.

КПД солнечных батарей (видео)

Современные солнечные батареи, как экологически чистые устройства преобразования энергии с неиссякаемым теплоносителем, набирают всю большую популярность. Уже сегодня девайсы с фотоэлектрическими преобразователями используют для бытовых целей (зарядки телефонов, планшетов). Эффективность солнечных установок пока уступает альтернативным способам получения энергии. Но, повышение КПД преобразователей – это первостепенная задача современной энергетики.

Добавить комментарий

teploclass.ru

Отопление дома солнечными батареями. Установка.

Последнее время все больше владельцев загородной недвижимости для создания комфортных условий проживания стараются использовать солнечную энергию. В данной статье попробуем рассказать, как можно эффективно организовать отопление дома солнечными батареями.

Солнечные батареи – это.

Специальная рамка, объединяющая соединенные между собой в единое целое несколько фотоэлектрических элементов. Каждая ячейка предназначена для преобразования энергии солнечного потока в электрическую.

Виды солнечных батарей.

Сегодня производители предлагают в основном три вида солнечных батарей.

По данной теме есть похожая статья - Строительство бани от Фундамента до Крыши.

Монокристаллические.

Позволяют создать наиболее эффективное отопление загородного дома солнечными батареями. Они набираются из большого количества силиконовых ячеек. При попадании солнечного потока на поверхность этих фотоэлементов, внутри активируются электрохимические процессы. В основном монокристаллические батареи содержат 36 ячеек. Это оптимальное количество позволяет создавать легкие и компактные панели. Оригинальное соединение фотоэлементов обеспечивает небольшую гибкость рамке. Благодаря этому параметру монокристаллические батареи легко устанавливаются на неровных поверхностях, обеспечивая правильный угол наклона к световому потоку. Максимальная их мощность достигается при средней температуре окружающего воздуха около 15–25 °C.

Тонколистовые.

В отличие от аналогов предоставляют ряд неоспоримых преимуществ:

  • для активации фотосинтеза необязательно обеспечивать поток света, перпендикулярно направленный на поверхность солнечных панелей;
  • благодаря этому их можно устанавливать в любом удобном пользователю месте: крыше, стене здания, на отдельной конструкции;
  • максимальные потери на тонколистовых батареях в пасмурную погоду составляют всего 15%;
  • тонкая пленка обеспечивает отличную работу панелей в условиях повышенной запыленности;
  • прекрасное отопление частного дома солнечными батареями тонколистового типа можно организовать в любом регионе.

Поликристаллические.

Для создания элементов приема солнечного потока на батареях используют поликристаллы кремния яркого синего цвета. Монокристаллические панели применяются при освещении улиц, парков, для электрического снабжения частного дома или дачи, кафе и ресторанов.

Принцип работы.

Специальные панели с большим количеством фотоэлементов поглощают энергию солнечного потока. При попадании лучей на поверхность принимающих устройствах, в них активируется электрохимическая реакция. Выделяемая каждым элементов электрическая энергия концентрируется и выводится на общий накопитель.

С одной солнечной панели стандартных размеров выводится около 250 Вт. Вследствие этого понятно, что для обеспечения нормального функционирования загородного дома необходимо объединить несколько панелей в единую систему. Практические данные показывают, что площадь солнечных батарей 20–30 кв.метров вполне достаточно для полноценного функционирования электрических приборов в доме обычной семьи.

Понятно, что в ночное время фотосинтез на солнечных батареях не протекает. Вследствие этого для накопления электроэнергии необходимо наличие аккумуляторов. Количество их напрямую зависит от интенсивности расхода электричества в темное время. Подзарядка аккумуляторов осуществляется за счет избыточной электроэнергии, вырабатываемой при фотосинтезе в светлое время суток.

Для преобразования постоянного тока, полученного в результате синтеза солнечного потока, в рабочее электричество в комплекте оборудования предусмотрен инвертор. Все современные электроприборы функционируют от переменного тока. Электрические котлы также работают на этом виде электричества.

Достоинства применения солнечных батарей.

Использование этих источников электрической энергии для водонагревателей в частном доме предоставляет широкий спектр преимуществ перед другими отопительными устройствами:

  • нет токсичных выбросов в окружающую атмосферу благодаря отсутствию процесса сжигания энергоносителей;
  • изготовление их различной мощности дает возможность получить от солнечных батарей достаточное количество электрической энергии для полноценного функционирования отопительной системы и других электрических приборов;
  • отсутствие горючих энергоносителей исключает возможность случайного возгорания, конечно, если электрические соединения и проводка выполнены с соблюдением всех требований безопасности;
  • применение фотоэлементов, преобразующих инфракрасное излучение, позволяет получать электроэнергию даже при большой плотной облачности;
  • обеспечивается полная электрификация дома независимо от других энергоносителей;
  • установленное оборудование не требует дополнительных вложений на протяжении длительного периода;
  • технология отопления с помощью солнечных батарей предоставляет возможность полной автоматизации всего цикла рабочих процессов: получения электрической энергии, отапливания дома, контроль и поддержание необходимой температуры;
  • производители гарантируют надежную эксплуатацию солнечных батарей без дополнительных вложений в течение 30 лет.

Особенности выбора.

Выбирая солнечные батареи для отопления дома необходимо учесть несколько нюансов:

Мощность – один из основных параметров, влияющий на стоимость солнечных панелей. Поэтому перед их приобретением необходимо определить ориентировочное потребление электроэнергии. В сопроводительной документации всегда указывается максимальная мощность, вырабатываемая батареями за час в ваттах. Но необходимо учитывать, что в пасмурную погоду она будет немного меньшая. Также мощность зависит от вида солнечных батарей.

Размер – существенно зависит от мощности панелей и типа их фотоэлементов. Крыша должна иметь необходимые размеры для монтажа нужного количества панелей.

В среднем 1 кв. метр солнечных батарей дает за 1 час около 120 Вт.

Панели суммарной площадью в 20 кв. метров обеспечат электроэнергией одноэтажный загородный дом в полном объеме.

Тип – поли- и монокристаллические солнечные батареи имеют значительно высшую стоимость, чем кремневые тонколистовые. Но вырабатывают больше электроэнергии и требуют меньшей поверхности крыши.

Возможность при необходимости наращивания мощности. Ее можно легко увеличить за счет добавления дополнительных солнечных панелей. Замена батарей путем приобретения новых более эффективных экономически невыгодно. Поэтому необходимо учесть небольшой запас поверхности крыши.

Солнечные батареи от ведущих производителей гарантировано выдержат срок эксплуатации больше 25 лет. Надежность их зависит от фирмы производителя. Желательно отдать предпочтение известному производителю. Он обеспечивает бесплатную замену панелей по гарантии, оказывает помощь при монтаже, наладке, ремонте, наращивании мощности.

Особенности установки.

Отопление от солнечных батарей в значительной мере зависит от правильности их установки. Предлагаем несколько советов, которые помогут обеспечить получение максимальной электроэнергии:

  • необходимо проверить прочность поверхности, на которую планируется монтировать солнечные батареи;
  • должна быть выполнена правильная их ориентация относительно солнца;
  • необходимо установить правильный угол наклона;
  • проверить, чтобы их не затеняли другие предметы.

Солнечные батареи для отопления дома рекомендуется монтировать на южном склоне крыши. В идеальном варианте их наклон желательно обеспечить в соответствии с географической широтой местности. Поверхность панелей в таком положение будет получать под прямым углом максимальный поток света. Тень от деревьев, соседних сооружений, от антенны. Ведь даже небольшой затененный участок будет значительно снижать эффективность выработки электроэнергии.

Экран на батарею отопления своими руками. - здесь больше полезной информации.

Определившись с участком монтажа солнечных панелей, необходимо проверить прочность кровельной конструкции. Если возникнут сомнения, тогда лучше усилить ее.

Вас заинтересует эта статья - Как выбрать электрокотел для отопления?

Установка солнечных батарей, видео:

Правила установки солнечных панелей.

Производители солнечных батарей в основном поставляют в комплекте все необходимые элементы крепления для любого варианта монтажа. Поэтому установку панелей можно выполнить своими руками. Учитывая конструктивные особенности кровельной поверхности, существует несколько способов монтажа:

  • наклонный – при любом угле наклона ската;
  • горизонтальный – если плоская крыша;
  • свободностоящий – располагают их на опорных специальных конструкциях;
  • интегрированный – солнечные панели являются элементами конструкции здания.

При установке солнечных батарей на плоскую крышу необходимо обеспечить зазор между ними и поверхностью кровли. Это исключит нагрев светоприемных элементов и существенное снижение их производительности. На темных крышах желательно проложить светлое покрытие. Это обеспечит хорошее дополнительное рассеивание светового потока и будет препятствовать перегреву панелей. При установке батарей в несколько рядов между ними должно быть расстояние, составляющее 1,7 от высоты панелей.

Несмотря на простоту установки для ее выполнения желательно обратиться к специалистам. В этом случае вы получите качественный монтаж по всем правилам и главное – гарантийное сервисное обслуживание и ремонт на весь период эксплуатации, что немаловажно при высокой стоимости солнечных батарей.

You need to enable JavaScript to vote

Дополните статью вашими комментариями, фото и видео:

dimdom.ru

схема оборудования, расчет стоимости комплекта

Солнечные батареи для дома: схема оборудования, расчет стоимости комплекта

Глядя на океан энергии, льющейся с небес на землю, мы остаемся зависимыми от электросетей.

Если в городе поставка тока более-менее стабильна, то за его пределами жители регулярно становятся участниками «конца света».

Как обеспечить свой дом надежным источником электроэнергии и не лишить себя комфорта, невозможного без «направленного движения электронов»? Ответ достаточно прост в теории, но почти незнаком многим на практике.

Это солнечные батареи для частного дома они являются главным условием автономного существования.

Что представляют собой эти устройства, их виды, характеристики и эффективность применения мы рассмотрим в данной статье.

Виды солнечных батарей

Из школьного курса физики нам знаком фотоэлектрический эффект. Он возникает в полупроводниках под действием света. На этом принципе работают все солнечные батареи.

Не будем углубляться в теорию процесса, а отметим лишь самые важные практические моменты:

  • Существует три вида солнечных батарей: монокристаллические и поликристаллические и панели из аморфного кремния (гибкие).
  • Все они вырабатывают постоянный ток (напряжением 12 или 24 В).
  • Срок службы данных устройств превышает 20 лет.
  • Мощная батарея не может эффективно работать без дополнительного оборудования (контроллера, аккумулятора, инвертора).

Теперь пройдем подробно по каждому пункту. Монокристаллическая панель по сравнению с поликристаллической выдает более высокую мощность с единицы поверхности. При этом цена у нее существенно выше.

Производительность поликристаллической ячейки на 15-20% меньше, но зато при облачной погоде она снижается незначительно. У монокристалла, напротив, при рассеянном освещении резко уменьшается выработка электричества. Солнечная батарея из аморфного кремния дешевле поликристаллической, но срок ее службы в 2-3 раза меньше. Исходя из перечисленных фактов, выгоднее покупать поликристаллические панели.

Набор оборудования для солнечной станции

Мощная солнечная батарея для дачи – устройство не самодостаточное. Полученную энергию нужно где-то запасти, чтобы вечером и в пасмурную погоду полноценно пользоваться бытовыми электроприборами.

Поэтому емкий и живучий аккумулятор нам в любом случае потребуется. В его выборе есть один важный нюанс: не пытайтесь сэкономить, покупая стартовый автомобильный аккумулятор. Он плохо подходит для цикличного запасания энергии и не переносит глубокого разряда. Его главное предназначение – дать мощный, но кратковременный ток для пуска двигателя.

Для запасания и медленного расходования энергии нужны аккумуляторы другого типа: AGM или гелевые. Первые дешевле, но имеют небольшой срок службы (до 5 лет). Гелевые аккумуляторы дороже, но зато работают значительно дольше (8-10 лет).

Контроллер – еще один важный элемент автономной гелиостанции. Он выполняет несколько задач:

  • Отключает батарею от аккумулятора в момент полного заряда и включает ее для новой закачки электричества.
  • Выбирает оптимальный режим зарядки, повышая количество запасаемой энергии.
  • Обеспечивает максимальный срок службы аккумулятора.

Существует несколько типов контроллеров, используемых в солнечных станциях:

  • ON/OFF «включил-выключил»;
  • MPPT.

Самый дешевый прибор просто отключает солнечную панель от аккумулятора при возрастании напряжения на его клеммах до максимального уровня. Это не лучший вариант, поскольку в этот момент аккумулятор еще не полностью заряжен.

Более дорогой PWM-контроллер действует «умнее». После набора максимального напряжения, он понижает его до заданного уровня и держит еще пару часов. Так достигается более полный уровень накопления энергии.

И наконец, самый интеллектуальный контроллер MPPT- типа максимально эффективно использует мощность солнечной панели на всех режимах ее работы. Это позволяет запасти в аккумуляторе дополнительно от 10 до 30 % электричества.

Независимо от вида используемых полупроводниковых материалов (поликристаллы, монокристалл, аморфный кремний) устройство солнечной батареи представляет собой цепочку последовательно соединенных ячеек-модулей. Каждый из них генерирует небольшое напряжение (в пределах 0,5 вольт) и слабый ток (десятые доли ампера). Работая вместе, они «сливают» накопленную энергию в общий канал и на выходе из батареи мы получаем ток большой силы и постоянного напряжения (12 или 24 Вольт).


Стандартные бытовые электроприборы рассчитаны на 220 Вольт, поэтому работать от «постоянки» не будут. Преобразование постоянного тока в переменный выполняет отдельное устройство-инвертор. Им завершается цепочка оборудования, необходимого для солнечной батареи.

Несмотря на относительно высокую стартовую стоимость компонентов солнечной станции, ее эксплуатация получается выгодной благодаря большому ресурсу «жизни» главных элементов: фотокристаллической панели и аккумулятора.

Сколько нужно солнечных батарей для дома и дачи?

Здесь все просто. Покупателю не нужно заниматься сложным расчетом мощности солнечной станции и подбирать для нее батареи. Эту работу уже проделали специалисты компаний, выпускающих и продающих данное оборудование.

Потребителю остается лишь выбрать из предложенного ряда готовый комплект, исходя из своих потребностей. В качестве примера рассмотрим несколько стандартных вариантов, которые представлены на сайтах продавцов (актуально на 2016 год).

Гелиостанция, построенная на одной панели мощностью 250 Ватт, рассчитана на энергоснабжение потребителей, перечисленных в таблице №1.


Ее ориентировочная цена складывается из стоимости устройств, указанных в таблице №2.


Солнечная станция мощностью 500 Ватт способна обеспечить электричеством набор бытовых приборов, указанный в таблице №3.


Ее ориентировочную стоимость (с разбивкой по видам и моделям оборудования) вы найдете в таблице №4.


Гелиостанция на 1000 Ватт способна питать током не только экономные светодиодные лампочки, телевизор, ноутбук и спутниковую антенну. Одновременно с ними она «потянет» микроволновку, водяной насос или мощную электроплиту (таблица №5).


Основа данной гелиостанции – 4 солнечные панели мощностью по 250 Ватт каждая. За весь комплект оборудования (без стоимости монтажа, соединительных муфт и кабеля) нужно заплатить сумму, указанную в таблице №6


Изучая представленные комплекты оборудования, нетрудно заметить, что стоимость инвертора сравнима с ценой солнечной батареи. Поэтому некоторые владельцы солнечных станций предпочитают обходиться без инверторного преобразователя. Они покупают для своего дома бытовые приборы, работающие от постоянного тока напряжением 12 Вольт. Помимо высокой цены инвертор при работе потребляет около 10% энергии, получаемой от солнечной батареи. Поэтому его исключение из цепочки оборудования дает неплохую экономию.

Особенности монтажа

Установка солнечных батарей – процесс технически несложный, но весьма ответственный. Площадь и вес мощных панелей достаточно большие, поэтому им требуется надежное крепление с помощью направляющих и специальных крепежных элементов. Кроме этого на крыше необходимо предусмотреть возможность легкого доступа к батареям для очистки от пыли и снега.

От величины угла, под которым солнечные лучи падают на фотоэлементы, напрямую зависит выработка энергии. Поэтому солнечные батареи не фиксируют в одном положении, а монтируют на поворотных устройствах.


Существует два основных позиции гелиопанелей: летняя и зимняя. Меняя угол наклона, от солнечной станции получают максимальный КПД.

Характерные отзывы

Их можно разделить на две группы: отзывы тех, кто уже пользуется данными устройствами и мнения всех, кто только изучает вопрос автономного энергоснабжения.

Большинство владельцев солнечных станций довольны своим выбором. Оснастив ими свой загородный дом, они отмечают надежность, всесезонность и эффективность гелиопанелей. Размышляющие о покупке, высказывают сомнения в экономической целесообразности, опасаясь долгого срока окупаемости оборудования.

Мы выскажем свои соображения по данной теме. Принимая в расчет стабильный рост стоимости электроэнергии, получаемой из внешних сетей, использование гелиостанции нельзя назвать убыточным. Если же речь идет о районах, где энергоснабжение полностью отсутствует или характеризуется частыми отключениями, то гелиостанция – безальтернативный вариант.

Самостоятельная сборка

Попробовать свои силы в сфере солнечной энергетики домашних умельцев побуждают два фактора: стремление снизить стоимость гелиопенелей и новизна данной работы.

Экономия, получаемая при самостоятельной сборке, впечатляет. Комплект «сделай сам», состоящий из фотоячеек и монтажной токопроводящей ленты почти на 50% дешевле батареи, собранной на заводе. Купить его можно на российских торговых интернет-площадках или заказать прямую доставку из страны-производителя.

Ответов на вопрос как сделать солнечную батарею для дома своими руками во всемирной сети можно найти очень много. Кроме устного описания процесса, здесь можно найти толковые видеоролики, наглядно демонстрирующие основные его этапы.

Практические советы, которые содержатся в подобных руководствах, основаны на бесценном опыте проб и ошибок. Они помогают новичкам без серьезных финансовых потерь успешно выполнить данную работу.

Сборка солнечной батареи включает следующие этапы:

  • последовательную пайку фотоячеек в единую энергоцепочку с помощью токопроводящей ленты;
  • изготовление рамки корпуса со стеклом.

Самый ответственный момент – заливка фотоячеек прозрачным герметиком и их объединение с остекленной рамкой. Здесь существует отработанная технология, основой которой служит толстый лист поролона, предохраняющий хрупкие фотоэлементы от разрушения.

stroitelstvo.domov.resant.ru

Расчет солнечных панелей: подробная инструкция для установки

  • Рассчитываем мощность батарей

Солнечные батареи с каждым годом становятся все более востребованной альтернативой традиционного энергоснабжения. Первое, что предстоит сделать человеку, решившему установить солнечные панели – правильно оценить потребности своих владений, произвести расчеты.

Рассчитываем мощность батарей

Выяснить необходимую мощность нужно на основании количества потребляемой вами энергии (показания посмотрите по счетчику).

Нужно понимать, что солнечные батареи вырабатывают электричество исключительно в светлое время суток. Кроме того, лишь чистое небо и падение лучей под прямым углом гарантирует выдачу паспортной мощности. В противном случае выработка электроэнергии падает. Так, при пасмурной погоде мощность батарей подает в 15-20 раз.

Производя расчет, берите рабочее время, при котором панели функционируют на всю – с 9 до 16 часов. Летом батареи работают от рассвета до заката, но вечером или утром выработка составляет 20-30% от всей дневной.

Следовательно, массив батарей мощностью 1 кВт при солнечной погоде летом за 7 часов выдает 7 кВт/ч энергии, т.е. 210 кВт в месяц. Те 3 кВт, которые вырабатываются утром и вечером, оставьте про запас на случай пасмурной погоды. Кроме того, панели устанавливают стационарно, из чего следует, наклон солнечных лучей тоже будет меняться, что не позволит 100% выработку.

Однако даже на 210 кВт/ч за месяц не стоит полностью полагаться. Существует ряд факторов, которые могут снизить показатели:

  • Географическое положение – не может в нашем регионе в месяце быть 30 солнечных дней. Нужно просмотреть архивы погоды и узнать примерное количество пасмурных дней. Не менее 5-6 дней точно окажутся несолнечными, солнечные панели не дадут и половины обещанной электроэнергии. Вычеркиваем 4 дня, получаем уже не 210 кВТ/ч, а 186.
  • Смена сезонов – осенью и весной световой день короче, а пасмурных дней больше. Если собираетесь пользоваться энергией солнца с марта по октябрь, увеличьте массив модулей на 30-50% в зависимости от места жительства.
  • Дополнительно оборудование – происходят серьезные потери в инверторе, а также аккумуляторах.

Рассчитываем емкость аккумулятора для панелей

Минимальный запас емкости должен быть таким, чтобы его хватало на работу ночью. Например, если с вечера до утра вы потребляете 3кВт/ч энергии, то запас энергии для аккумулятора должен быть именно таким.

Аккумулятор нельзя разряжать полностью.

Специализированные АКБ можно разрядить до 70% максимум. В противном случае они быстро выходят из строя. Обычные автомобильные АКБ нельзя разряжать более чем на 50%. Поэтому аккумуляторов нужно ставить вдвое больше, чем требуется, чтобы не менять их каждый год.

Оптимальный запас емкости АКБ – суточный запас энергии. Так, 10 кВТ/ч за 24 часа требует такой же рабочей емкости АКБ. Лишь тогда вы сможете прожить пару пасмурных дней без перебоев. В обычные дни аккумуляторы будут разряжаться частично (на 20-30%), что продлит срок эксплуатации АКБ.

Немаловажная деталь – КПД свинцово-кислотных аккумуляторов, равный 80%. Т.е. при полном заряде аккумулятор берет на 20% больше, чем сможет отдать. Кроме того, КПД зависит от разряда и заряда тока, чем они больше, тем ниже КПД. Например, подключая чайник на 2кВт через инвертор и аккумулятор на 200Ач, то в последнем напряжение резко упадет, т.к. ток разряда будет около 250А, а КПД отдачи упадет до 40-50%.

С учетом потери полученной от батарей энергии в аккумуляторе и преобразовании постоянного напряжения в переменный ток 220 В, потери составляют 40%. Поэтому запас емкости АКБ и массив батарей нужно увеличить на 40%, чтобы перекрыть затраты.

Существует еще один похититель энергии – контроллер заряда аккумулятора. Их производят двух типов: PWM(ШИМ) и МРРТ. Первые более простые и дешевые, но они не трансформируют энергию, а потому панели не отдают в АКБ всю мощность (максимум 80% от паспортной мощности). МРРТ отслеживает пик мощности и может преобразовать энергию, понижая напряжение и поднимая ток зарядки, что увеличивает отдачу до 99%.

Ставя дешевый PWM, прибавьте массив солнечных батарей еще на 20%.

Просчет солнечных панелей для дачи или частного дома

Если вы не знаете потребление, а только планируете питать дачу энергией солнца, то рассчитать расход достаточно просто. Холодильник, потребляющий 370 кВт/ч, значит, в месяц он потребит 30,8 кВТ/ч энергии (1,02 кВт/ч). Считаем свет: энергосберегающие лампочки по 12 ватт каждая, а их у вас 6 штук и светят они около 6 часов за сутки. Значит, вам необходимо 12*6*6 =432 Вт/ч.

По такому же принципу посчитайте потребление телевизора, насоса и других приборов. Сложив все, вы получите суточное потребление энергии, умножайте на количество дней в месяц и получите примерную цифру. Например, вы получили расход 70 кВт/ч, прибавляем 40% энергии, теряющейся в инверторе и АКБ. Значит, вам нужны батареи, вырабатывающие 100 кВт/ч (100/30/7 = 0,476 кВт в день). Нужен комплект батарей мощностью 0,5 кВт. Но этого массива хватит только летом, даже осенью и весной в пасмурные дни могут быть перебои с электричеством. Поэтому нужно удвоить массив панелей.

Стоимость системы может отличаться в зависимости от комплектующих: фотомодулей, батарей и инверторов. Примерная цена 1 кВт мощности колеблется в пределах 2,5-3 евро.

Имея расчет стоимости системы, легко и быстро можно посчитать окупятся ли затраты на ее приобретение.

Мощность солнечного излучения на квадратный метр

Энергия нашего Солнца

Почти вся энергия на Землю, приходит от Солнца. Если бы не оно, Земля была бы холодной и безжизненной. Растения растут, потому что получают необходимую энергию. Солнце ответственно за ветер, и даже ископаемое топливо это энергия нашей звезды, запасенная миллионы лет назад. Но сколько энергии на самом деле, приходит от него?

Как вы, наверное, знаете, в его ядре, температура и давление настолько высоки, что атомы водорода сливаются в атомы гелия.

Излучение Солнца

В результате этой реакции синтеза, звезда производит 386 миллиардов мегаватт. Большая часть излучается в пространство. Вот почему мы видим звезды, которые удалены на десятки и сотни световых лет от Земли. Мощность излучения Солнца равна 1,366 киловатт на квадратный метр. Около 89000 тераватт проходит через атмосферу и достигает поверхности Земли. Получается его энергия на Земле составляет около 89000 тераватт! Просто для сравнения, общее потребление каждого человека составляет 15 тераватт.

Так что Солнце дает в 5900 раз больше энергии, чем люди в настоящее время производят. Нам просто нужно научится использовать ее.

Наиболее эффективный способ использовать излучение нашей звезды это фотоэлементы. Как таковое, это преобразование фотонов в электричество. Но энергия создает ветер, который заставляет работать генераторы. Солнце помогает расти культурам, которые мы используем для производства биотоплива. И, как мы уже говорили, ископаемые виды топлива, такие как нефть и уголь это концентрированное солнечное излучение, собранное растениями в течение миллионов лет.

Мощность излучения Солнца и использование энергии на Земле

Мощность излучения Солнца равна 1,366 киловатт на квадратный метр. Получается его энергия на Земле составляет около 89000 тераватт

Интенсивность солнечного света, которая достигает земли меняется в зависимости от времени суток, года, местоположения и погодных условий. Общее количество энергии, подсчитанное за день или за год, называется иррадиацией (или еще по-другому «приход солнечной радиации») и показывает, насколько мощным было солнечное излучение. Иррадиация измеряется в Вт*ч/м² в день, или другой период.

Интенсивность солнечного излучения в свободном пространстве на удалении, равном среднему расстоянию между Землей и Солнцем, называется солнечной постоянной. Ее величина - 1353 Вт/м². При прохождении через атмосферу солнечный свет ослабляется в основном из-за поглощения инфракрасного излучения парами воды, ультрафиолетового излучения - озоном и рассеяния излучения частицами атмосферной пыли и аэрозолями. Показатель атмосферного влияния на интенсивность солнечного излучения, доходящего до земной поверхности, называется «воздушной массой» (АМ). АМ определяется как секанс угла между Солнцем и зенитом.

На рис.1 показано спектральное распределение интенсивности солнечного излучения в различных условиях. Верхняя кривая (АМ0) соответствует солнечному спектру за пределами земной атмосферы (например, на борту космического корабля), т.е. при нулевой воздушной массе. Она аппроксимируется распределением интенсивности излучения абсолютно черного тела при температуре 5800 К. Кривые АМ1 и АМ2 иллюстрируют спектральное распределение солнечного излучения на поверхности Земли, когда Солнце в зените и при угле между Солнцем и зенитом 60°, соответственно. При этом полная мощность излучения - соответственно порядка 925 и 691 Вт/м². Средняя интенсивность излучения на Земле примерно совпадает с интенсивностью излучения при АМ=1,5 (Солнце - под углом 45° к горизонту) .

Около поверхности Земли можно принять среднюю величину интенсивности солнечной радиации 635 Вт/м². В очень ясный солнечный день эта величина колеблется от 950 Вт/м² до 1220 Вт/м². Среднее значение - примерно 1000 Вт/м² . Пример: Интенсивность полного излучения в Цюрихе (47°30′ с. ш., 400 м над уровнем моря) на поверхности, перпендикулярной излучению:1 мая 12 ч 00 мин 1080 Вт/м²;21 декабря 12 ч 00 мин 930 Вт/м².

Для упрощения вычисления по приходу солнечной энергии, его обычно выражают в часах солнечного сияния с интенсивностью 1000 Вт/м². Т.е. 1 час соответствует приходу солнечной радиации в 1000 Вт*ч/м². Это примерно соответствует периоду, когда солнце светит летом в середине солнечного безоблачного дня на поверхность, перпендикулярную солнечным лучам.

Пример
Яркое солнце светит с интенсивностью 1000 Вт/м² на поверхность, перпендикулярную солнечным лучам. За 1 час на 1 м² падает 1 кВт*ч энергии (энергия равна произведению мощности на время). Аналогично, средний приход солнечной радиации в 5 кВт*ч/м² в течение дня соответствует 5 пиковым часам солнечного сияния в день. Не путайте пиковые часы с реальной длительностью светового дня. За световой день солнце светит с разной интенсивностью, но в сумме она дает такое же количество энергии, как если бы оно светило 5 часов с максимальной интенсивностью. Именно пиковые часы солнечного сияния используются в расчетах солнечных энергетических установок.

Приход солнечной радиации меняется в течение дня и от места к месту, особенно в горных районах. Иррадиация меняется в среднем от 1000 кВт*ч/м² в год для северо-европейских стран, до 2000-2500 кВт*ч/м² в год для пустынь. Погодные условия и склонение солнца (которое зависит от широты местности), также приводит к различиям в приходе солнечной радиации.

В России, вопреки распространённому мнению, очень много мест, где выгодно преобразовывать солнечную энергию в электроэнергию при помощи . Ниже приведена карта ресурсов солнечной энергии в России. Как видим, на большей части России можно успешно использовать в сезонном режиме, а в районах с числом часов солнечного сияния более 2000 часов/год - круглый год. Естественно, в зимний период выработка энергии солнечными панелями существенно снижается, но все равно стоимость электроэнергии от солнечной электростанции остается существенно ниже, чем от дизельного или бензинового генератора.

Особенно выгодно применение там, где нет централизованных электрических сетей и энергообеспечение обеспечивается за счет дизель-генераторов. А таких районов в России очень много.

Более того, даже там, где сети есть, использование работающих параллельно с сетью солнечных батарей позволяет значительно снизить расходы на электроэнергию. При существующей тенденции на повышении тарифов естественных энергетических монополий России, установки солнечных батарей становится умным вложением денег.