Справка о потерях в электрических сетях потребителя. "Новости Электротехники N6(24)"Норматив потерь электроэнергии в электрических сетях

Потеря электроэнергии в электрических сетях в значительной степени влияет на экономичность их работы. Это очень важный показатель, позволяющий на практике определить состояние системы, учитывающей электрическую энергию и общую эффективность электроснабжения. В современных условиях проблемы электрических сетей постоянно накапливаются. Все они касаются технического переоснащения и реконструкции, дальнейшего развития средств управления и эксплуатации.

Потеря электроэнергии - серьезная проблема

Потери электроэнергии происходят во всех электрических сетях и являются серьезной проблемой для многих стран. Как утверждают международные эксперты, если показатели потерь во время ее передачи и распределения составляют не более 4-5 %, то состояние сетей можно считать удовлетворительным. Показатель в количестве 10-ти % считается предельно допустимым. При общих огромных объемах поставок электроэнергии, процент в физическом выражении составляет очень серьезную цифру.

Такое положение дел вызвано тем, что в ряде стран снизился уровень инвестирования в области совершенствования электро сетей, мероприятия, направленные на снижение потерь не дают должного эффекта. В результате, в системах электроснабжения, накопилось большое количество оборудования и средств учета, которые морально и физически давно устарели. Многое установленное оборудование не соответствует передаваемой по нему мощности.

Главные причины потерь электроэнергии

Все потери электрической энергии подразделяются на основные виды:

  • Абсолютные - представляют собой разницу между количеством электроэнергии поступившей изначально в сеть, и количеством электроэнергии, реально полученной потребителями.
  • Технические - зависят от физических процессов, происходящих при передаче, распределении и трансформации. Определяются с помощью математических расчетов и бывают переменными, зависящими от нагрузки и условно-постоянными.
  • Коммерческие - составляют разницу между абсолютными и техническими потерями.

Именно последний вид приносит реальные финансовые убытки. Теоретически, показатель коммерческих потерь должен иметь нулевое значение. На самом деле, при учете абсолютных и технических потерь, допускается масса погрешностей, которые накапливаются в больших количествах и вырастают в общие цифры. Для того, чтобы максимально снизить их, должны проводиться соответствующие мероприятия. Например, в случае невозможности использования более точных , нужно своевременно вносить поправки к показаниям действующих электросчетчиков.

Таким образом, потеря электроэнергии в электрических сетях, может быть снижена при условии своевременного и качественного проведения комплекса необходимых мероприятий.

Компенсация реактивной мощности

Причины потерь электроэнергии в воздушных линиях и способы борьбы с ними, на основе практического опыта.

Вероятно, каждый, кто имеет дом в деревне, живет в частном секторе в городе или строит свой дом, со временем столкнется с проблемой нестабильности электросети. Это выражается в резких бросках напряжения, проблемах защиты электроприборов при грозах, длительных периодах сильно завышенного или сильно заниженного напряжения в электросети.

Многие из этих проблем связаны с особенностями воздушных электрических линий, другие, с невыполнением элементарных правил прокладки линий и их обслуживания. К сожалению, в нашей стране все более внедряется в жизнь лозунг: «Спасение утопающих - дело рук самих утопающих». Поэтому, попробуем рассмотреть эти проблемы и способы их решения подробнее.

Откуда берутся потерив электрических сетях?

Во всем виноват Ом.

Для тех кто, знаком с законом Ома, не трудно вспомнить, что U=I*R. Это значит, что падение напряжения в проводах электролинии пропорционально ее сопротивлению и току через нее. Чем больше это падение, тем меньше напряжение в розетках у вас дома. Поэтому сопротивление линии электропередач нужно снижать. Причем ее сопротивление складывается из сопротивления прямого и обратного провода - фазы и нуля от трансформатора подстанции до вашего дома.

Непонятная реактивная мощность.

Вторым источником потерь является или точнее реактивная нагрузка. Если нагрузка чисто активная, например это лампы накаливания, электронагреватели, электроплитки, то электроэнергия потребляется практически полностью (кпд более 90%, cos стремится к 1). Но это идеальный случай, обычно нагрузка имеет емкостной или индуктивный характер. Реально косинус фи потребителя величина изменяемая по времени и имеет значение от 0.3 до 0.8, если не применять специальных мер.

Из статистики известно, что по причине, нескомпенсированной реактивной мощности потребитель теряет до 30% электроэнергии. Для того чтобы ликвидировать такие типы потерь, используются компенсаторы реактивной мощности . Такие устройства серийно выпускаются промышленностью. Причем они бывают от «однорозеточного» варианта, до устройств, устанавливаемых на трансформатор подстанции.

Оборотни в фуфайках.

Третьим источником потерь, является банальное воровство электроэнергии. Казалось бы, этим должны заниматься правоохранительные органы, но они не имеют отделов энергоаудита. Поэтому, третьим источником потерь тоже должен заниматься потребитель, т.к. по закону у него должен стоять общедомовой или общехозяйственный счетчик и за воровство паршивой овцы платит все стадо.

Оценка потерь в линии на конкретном примере.

Активное сопротивление линии R=(ρ*L)/ S, где ρ - удельное сопротивление материала провода, L- его длина, S - поперечное сечение. Для меди удельное сопротивление составляет 0,017, а для алюминия 0,028 Ом*мм2/м. Медь имеет почти в два раза меньшие потери, но она гораздо тяжелее и дороже алюминия, поэтому для воздушных линий обычно выбирают алюминиевые провода.

Таким образом, сопротивление одного метра алюминиевого провода, сечением 16 квадратных миллиметров, составит (0.028 х 1)/16=0.0018 Ом. Посмотрим, каковы будут потери в линии длиной 500 м, при мощности нагрузки 5 кВт. Так как ток течет по двум проводам, то длину линии удваиваем, т.е. 1000 м.

Сила тока при мощности 5 кВт составит: 5000/220=22.7 А. Падение напряжения в линии U=1000х0.0018х22.7=41 В. Напряжение на нагрузке 220-41=179 В. Это уже меньше допустимых 15% снижения напряжения. При максимальном токе 63 А, на который рассчитан этот провод (14 кВт), т.е. когда свои нагрузки включат ближайшие соседи, U=1000х0.0018х63=113 В! Именно поэтому в моем дачном доме по вечерам еле светится лампочка!

Способы борьбы с потерями.

Первый простейший способ борьбы с потерями.

Первый способ основан на снижении сопротивления нулевого провода . Как известно ток течет по двум проводам: нулевому и фазному. Если увеличение сечения фазного провода достаточно затратное (стоимость меди или алюминия плюс работы по демонтажу и монтажу), то сопротивление нулевого провода можно уменьшить достаточно просто и очень дешево.

Этот способ использовался с момента прокладки первых линий электропередач, но в настоящее время из-за «пофигизма» или незнания часто не используется. Заключается он в повторном заземлении нулевого провода на каждом столбе электролинии или (и) на каждой нагрузке. В этом случае параллельно сопротивлению нулевого провода подключается сопротивление земли между нулем трансформатора подстанции и нулем потребителя.

Если заземление сделано правильно, т.е. его сопротивление менее 8 Ом для однофазной сети, и менее 4 Ом для трехфазной, то удается существенно (до 50%) снизить потери в линии.

Второй простейший способ борьбы с потерями.

Второй простейший способ тоже основан на снижении сопротивления . Только в этом случае необходимо проверять оба провода - ноль и фазу. В процессе эксплуатации воздушных линий из-за обрыва проводов образуется места локального повышения сопротивления - , сростки и т.д. В процессе работы в этих местах происходит локальный разогрев и дальнейшая деградация провода, грозящая разрывом.

Такие места видны ночью из-за искрения и свечения. Необходимо периодически визуально проверять электролинию и заменять особо плохие ее отрезки или линию целиком.

Для ремонта лучше всего применить . Они называются самонесущими, т.к. не требуют стального троса для подвески и не рвутся под тяжестью снега и льда. Такие кабели долговечны (срок эксплуатации более 25 лет), есть специальные аксессуары для легкого и удобного крепления их к столбам и зданиям.

Третий способ борьбы с потерями.

Понятно, что третьим способом является замена отслужившей «воздушки» на новую.

В продаже имеются кабели типов СИП-2А, СИП-3, СИП-4. Сечение кабеля выбирают не менее 16 квадратных миллиметров, он может пропускать ток до 63 А, что соответствует мощности 14 кВт при однофазной сети и 42 кВт при трехфазной. Кабель имеет двухслойную изоляцию и покрыт специальным пластиком, защищающим изоляцию проводов от солнечной радиации. Примерные цены на СИП можно посмотреть здесь: http://www.eti.su/price/cable/over/over_399.html. Двухпроводный СИП кабель стоит от 23 руб. за погонный метр.

Четвертый способ борьбы с потерями.

Этот способ основан на применении специальных или другой объект. Такие стабилизаторы бывают как однофазного, так и трехфазного типа. Они увеличивают cos и обеспечивают стабилизацию напряжения на выходе в пределах + - 5%, при изменении напряжения на входе + - 30%. Их мощностной ряд может быть от сотен Вт до сотен кВт.

Вот несколько сайтов посвященных стабилизаторам: http://www.enstab.ru, http://www.generatorplus.ru, http://www.stabilizators.ru/, http://www.aes.ru. Например, приведенный на сайте http://www.gcstolica.ru/electrotech/stabilizer/x1/ однофазный стабилизатор «Лидер», мощностью 5 кВт, стоит 18500 руб. Отметим однако, что из-за перекоса фаз и потерь в электролинии, напряжение на входе стабилизатора может падать ниже 150 В. В этом случае, срабатывает встроенная защита и вам ничего не остается, как снизить свои потребности в электроэнергии.

Пятый способ компенсации потерь электроэнергии.

Это способ использования устройств компенсации реактивной мощности . Если нагрузка индуктивная, например различные электромоторы, то это конденсаторы, если емкостная, то это специальные индуктивности. Посмотреть примеры реализации можно здесь: http://www.emgerson.ru/produkciya/krm, http://www.nucon.ru/dictionary/kompensator-reaktivnoi-moshnosti.php, http://www.sdsauto.com/kompensator_moschnosti.html, http://www.vniir.ru/production/cat/cat/abs-vniir-ukrm.pdf и т.д.

Шестой способ - борьба с воровством электроэнергии.

По опыту работы, самым эффективным решением является вынос из здания и установка его на столбе линии электропередачи в специальном герметичном боксе. В этом же боксе устанавливаются вводный автомат с пожарным УЗО и разрядники защиты от перенапряжений.

Седьмой способ борьбы с потерями.

Этот способ снижения потерь за счет использования трехфазного подключения . При таком подключении снижаются токи по каждой фазе, а следовательно потери в линии и можно равномерно распределить нагрузку. Это один из самых простых и самых эффективных способов. Как говорят: «Классика жанра».

Выводы.

Если вы хотите снизить потери электроэнергии, то сначала сделайте аудит ваших электросетей. Если вы сами не в состоянии это сделать, то сейчас много организаций готовы помочь вам за ваши деньги. Надеюсь, что советы, приведенные выше, помогут осознать с чего начать и к чему стремиться. Все в ваших силах. Желаю успехов!

Передача электроэнергии по проводам в электрических системах связана с потерями активной и реактивной мощностей и энергии. Потери электроэнергии, связанные с её передачей и распределением, складываются из двух основных составляющих - потерь электроэнергии в линиях электропередач, генераторах, трансформаторах и других элементах электрической системы и так называемых коммерческих (нетехнических) потерь, вызванных несовершенством систем учёта и контроля использования электроэнергии .

Фактическими (отчётными) потерями электроэнергии называют разность электроэнергии, поступившей в сеть, и электроэнергии, отпущенной из сети потребителям, определяемую по данным системы учёта поступления и полезного отпуска электроэнергии. Эти потери включают в себя составляющие различной природы: потери в элементах сети, имеющие чисто физический характер, расход электроэнергии на работу оборудования, установленного на подстанциях и обеспечивающего передачу электроэнергии, погрешности фиксации электроэнергии приборами её учёта и, наконец, хищения электроэнергии путем воздействия на счётчики, неуплаты или неполной оплаты показаний счётчиков и т. п.

Разделение потерь электроэнергии может выполняться по различным категориям: по характеру потерь (постоянные, переменные), классам напряжений, группам элементов, производственным подразделениям и т. п. Для целей нормирования потерь целесообразно использовать укрупненную структуру потерь электроэнергии, в которой они разделены на составляющие, исходя из их физической природы и специфики методов определения их количественных значений. На основе такого подхода фактические потери могут быть разделены на четыре составляющие :

  • технические потери электроэнергии , обусловленные физическими процессами в проводах и электрооборудовании, происходящими при передаче электроэнергии по электрическим сетям и выражающимися в преобразовании части электроэнергии в тепло в элементах сетей. Технические потери не могут быть измерены. Их значения можно получить только расчётным путем на основе известных законов электротехники;
  • расход электроэнергии на собственные нужды подстанций , необходимый для обеспечения работы технологического оборудования подстанций и жизнедеятельности обслуживающего персонала, определяемый по показаниям счётчиков, установленных на трансформаторах собственных нужд подстанций 35 кВ и выше;
  • потери электроэнергии, обусловленные инструментальными погрешностями её измерения (инструментальные потери) - недоучёт электроэнергии, обусловленный техническими (метрологическими) характеристиками и режимами работы приборов, используемых для измерения энергии на объекте (трансформаторов тока и напряжения самих электросчётчиков). Эти потери получают расчётным путем; в расчёт метрологических потерь включают все приборы учёта отпуска электроэнергии из сети, в том числе и приборы учёта расхода электроэнергии на собственные нужды подстанций;
  • коммерческие потери состоят из потерь, обусловленных хищениями электроэнергии, несоответствием показаний счётчиков оплате электроэнергии и другими причинами в сфере организации контроля за потреблением энергии. Коммерческие потери не имеют самостоятельного математического описания и, следовательно, не могут быть рассчитаны автономно. Их значение определяют как разницу между фактическими (отчётными) потерями и суммой первых трех составляющих.

Отметим, что определять структуру потерь нас заставляет не наука (для научных исследований все подходы имеют смысл), а экономика. Поэтому для анализа отчётных потерь следует применять экономические критерии . С позиций экономики потери - это та часть электроэнергии, на которую зарегистрированный полезный отпуск потребителям оказался меньше электроэнергии, полученной сетью от производителей электроэнергии. Под полезным отпуском электроэнергии понимается не только та электроэнергия, денежные средства за которую действительно поступили на расчётный счёт энергоснабжающей организации, но и та, на которую выставлены счета, т. е. когда потребление энергии зафиксировано. Выставление счетов является практикой, применяемой к юридическим лицам, потребление энергии которыми фиксируется ежемесячно. В отличие от этого ежемесячные показания счётчиков, фиксирующих потребление энергии бытовыми абонентами, обычно неизвестны. Полезный отпуск электроэнергии бытовым абонентам определяют по поступившей за месяц оплате, поэтому вся неоплаченная энергия автоматически попадает в потери.

Баланс электроэнергии можно представить следующим образом:

где Wp - отпущенная в сеть электроэнергия; W no - полезно отпущенная потребителям электроэнергия; AW TexH - технические потери электроэнергии; AW CM - часть энергии, израсходованной на производственные и собственные нужды энергосистем; 5 W K0M - коммерческие потери электроэнергии.

Технические потери энергии принято подразделять на нагрузочные и потери холостого хода. К потерям холостого хода относятся постоянные (условно-постоянные) потери холостого хода электрооборудования, корона линий электропередачи и т. и. Они незначительно изменяются при изменении нагрузки элемента. Нагрузочные потери - это часть потерь, которая зависит от нагрузки элемента.

Согласно данным в 2005 г. уровень потерь в электрических сетях в России составлял 13,15 % от отпуска в сеть, на 2011 год этот показатель снизился до 8,7 % . Данная величина характеризует эффективность функционирования и техническое состояние сетей, поэтому интересно сравнить её с показателями других стран, представленными на рис. 1.1 . Наименьшими потерями 4,1-5,5 % характеризуются Нидерланды, Германия, Финляндия, Южная Корея, Япония и США, что является следствием технических решений и целенаправленной политики.

Как показывает отечественный и зарубежный опыт, кризисные явления в целом и в энергетике в частности отрицательным образом влияют на потери в электрических сетях , которые в ряде стран (рис. 1.1) превышают 20 %. Низкий уровень жизни - следствие невысокого уровня развития экономики и соответственно отсутствия средств, необходимых для наведения порядка. Нет средств на установку современных приборов учёта. Нет средств на достойную оплату труда инспекторов энергосбыта, недостаточно инвестиций в сетевую инфраструктуру. Есть понятные мотивы населения, крайне стесненного в материальных средствах, попытаться сэкономить на плате за электроэнергию. В Калмыкии, например, потери превышают 30 %, на Сахалине потери составляют более 30 % .


Рис. 1.1.

По мнению международных экспертов, относительные потери электроэнергии при её передаче и распределении считаются удовлетворительными (оптимальными), если они не превышают 4-5 % . В международной практике принято считать, что если потери электроэнергии в магистральных и распределительных сетях в сумме превышают 8-9 %, то такая передача и распределение электроэнергии является нерентабельной из-за дополнительного расхода миллионов тонн топлива на компенсацию потерь электроэнергии, повышенных розничных тарифов, повышенных цен на промышленную и сельскохозяйственную продукцию, а также из-за дополнительной нагрузки на сети, снижения качества электроэнергии по напряжению и т. д. . Потери на уровне 10 % можно считать максимально допустимыми с позиций физики процесса передачи электроэнергии по сетям для большинства стран с развитой экономикой .

В электрических сетях имеют место быть большие фактические потери электроэнергии.

Из общего количества потерь, потери в силовых трансформаторах МУП «ПЭС» составляют примерно 1,7%. Потери электроэнергии в линиях электропередачи напряжением 6-10 кВ составляют около 4,0 %. Потери электроэнергии в сетях 0,4 кВ составляют 9-10%.

Анализ динамики абсолютных и относительных потерь электроэнергии в сетях России, режимов их работы и загрузки показывает, что практически отсутствуют весомые причины роста технических потерь, обусловленных физическими процессами передачи и распределения электроэнергии. Основная причина потерь - увеличение коммерческой составляющей.

Основными причинами технических потерь являются:

Изношенность электрооборудования;

Использование устаревших видов электрооборудования;

Несоответствие используемого электрооборудования существующим нагрузкам;

Неоптимальные установившиеся режимы в распределительных сетях по уровням
напряжения и реактивной мощности.

Основными причинами коммерческих потерь являются:

Недопустимые погрешности измерений электроэнергии (несоответствие приборов учета классам точности, несоответствие трансформаторов тока существующим нагрузкам, нарушение сроков поверки и неисправности приборов учета электроэнергии);

Использование несовершенных методов расчета количества отпущенной электроэнергии при отсутствии приборов учета;

Несовершенство методов снятия показаний с приборов учета и выписки квитанций непосредственно абонентами бытового сектора;

Бездоговорное и неучтенное потребление электроэнергии (хищения);

Искажение объемов отпуска электроэнергии потребителям.

ФАКТИЧЕСКИЕ ПОТЕРИ ЭЛЕКТРОЭНЕРГИИ

В МУП «ПОДОЛЬСКАЯ ЭЛЕКТРОСЕТЬ»

СТРУКТУРА ФАКТИЧЕСКИХ ПОТЕРЬ ЭЛЕКТРОЭНЕРГИИ



Технологические потери электроэнергии (далее – ТПЭ) при ее передаче по электрическим сетям ТСО включают в себя технические потери в линиях и оборудовании электрических сетей, обусловленных физическими процессами, происходящими при передаче электроэнергии в соответствии с техническими характеристиками и режимами работы линий и оборудования, с учетом расхода электроэнергии на собственные нужды подстанций и потери, обусловленные допустимыми погрешностями системы учета электроэнергии. Объем (количество) технологических потерь электроэнергии в целях определения норматива технологических потерь электроэнергии при ее передаче по электрическим сетям рассчитывается в соответствии инструкцией по организации в Министерстве энергетики Российской Федерации работы по расчету и обоснованию нормативов технологических потерь электроэнергии при ее передаче по электрическим сетям, утвержденной приказом № 000 от 01.01.2001 года.

Методы расчета нормативных потерь электрической энергии

Основные понятия

1. Прием электрической энергии в сеть

2. Отдача электрической энергии из сети

4. Фактические (отчетные) потери электроэнергии в абсолютных единицах

6. Технические потери электроэнергии

9. Норматив технологических потерь электроэнергии в абсолютных единицах

11. Нормативные потери электроэнергии абсолютные

Расчет потерь в оборудовании электрической сети

ü Потери электроэнергии в воздушной линии

ü Потери электроэнергии в кабельной линии

ü Потери электроэнергии в трансформаторах (автотрансформаторах)

ü Потери электроэнергии в токоограничивающих реакторах

Условно-постоянные потери электроэнергии

Ü потери в стали силовых трансформаторов и автотрансформаторов;

Ü потери в стали шунтирующих реакторов;

Ü потери на корону в воздушных линиях 110 кВ и выше;

Ü потери в батареях конденсаторов (БСК) и статических тиристорных компенсаторах;

Ü потери в синхронных компенсаторах (СК);

Ü потери в ограничителях перенапряжения;

Ü потери электроэнергии в счетчиках непосредственного включения;

Ü потери в измерительных трансформаторах тока и напряжения;

Ü потери в изоляции кабельных линий;

Ü потери от токов утечки по изоляторам воздушных линий;

Ü потери в соединительных проводах и сборных шинах подстанций;

Ü расход электроэнергии на плавку гололеда;

Ü расход электроэнергии на собственные нужды подстанций с учетом потерь в стали и меди трансформаторов собственных нужд при несовпадении учета с границей балансовой принадлежности.

Переменные потери электроэнергии

Ü нагрузочные потери электроэнергии в трансформаторах и автотрансформаторах

Ü нагрузочные потери электроэнергии в воздушных и кабельных линиях

Ü потери электроэнергии в токограничивающих реакторах

Методы расчета переменных потерь

Метод оперативных расчетов установившихся режимов с использованием данных оперативно-диспетчерских комплексов (ОИК)

Метод расчета потерь по данным расчетных суток (использование режимных данных за характерные сутки)

Метод расчета потерь по средним нагрузкам

Метод расчета потерь в режиме максимальных нагрузок сети с использованием числа часов наибольших потерь мощности

Оценочные методы расчета

Метод оперативных расчетов

Потери электроэнергии на интервале времени в трехобмоточном трансформаторе

Метод расчетных суток

Потери электроэнергии за расчетный период

Коэффициент формы графика

Метод средних нагрузок

Потери электроэнергии за расчетный период

Разделение потерь на составляющие может проводиться по разным критериям: характеру потерь (постоянные, переменные), классам напряжения, группам элементов, производственным подразделениям и т. д. Для целей нормирования потерь целесообразно использовать укрупненную структуру потерь электроэнергии, в которой потери разделены на составляющие, исходя из их физической природы и специфики методов определения их количественных значений. Исходя из этого критерия, фактические потери могут быть разделены на четыре составляющие:

1) технические потери электроэнергии, обусловленные физическими процессами, происходящими при передаче электроэнергии по электрическим сетям и выражающимися в преобразовании части электроэнергии в тепло в элементах сетей. Технические потери не могут быть измерены. Их значения получают расчетным путем на основе известных законов электротехники;

2) расход электроэнергии на собственные нужды подстанций, необходимый для обеспечения работы технологического оборудова­ния подстанций и жизнедеятельности обслуживающего персонала. Расход электроэнергии на собственные нужды подстанций регистрируется счетчиками, установленными на трансформаторах собственных нужд;

3) потери электроэнергии, обусловленные инструментальными погрешностями ее измерения (инструментальные потери). Эти потери получают расчетным путем на основе данных о метрологических характеристиках и режимах работы используемых приборов;

4) коммерческие потери, обусловленные хищениями электроэнергии, несоответствием показаний счетчиков оплате за электроэнергию бытовыми потребителями и другими причинами в сфере организации контроля за потреблением энергии. Коммерческие потери не имеют самостоятельного математического описания и, как следствие, не могут быть рассчитаны автономно. Их значение определяют как разницу между фактическими (отчетными) потерями и суммой первых трех составляющих.

В настоящее время расход электроэнергии на собственные нужды подстанций отражается в отчетности в составе технических потерь, а потери, обусловленные погрешностями системы учета электроэнергии, - в составе коммерческих потерь. Это является недостатком существующей системы отчетности, так как не обеспечивает ясного представления о структуре потерь и целесообразных направлениях работ по их снижению.



Три первые составляющие укрупненной структуры потерь обусловлены технологическими потребностями процесса передачи электроэнергии по сетям и инструментального учета ее поступления и отпуска. Сумма этих составляющих хорошо описывается термином технологические потери. Четвертая составляющая -коммерческие потери - представляет собой воздействие «человеческого фактора» и включает в себя все его проявления: сознательные хищения электроэнергии некоторыми абонентами с помощью изменения показаний счетчиков, потребление энергии мимо счетчиков, неоплату или неполную оплату показаний счетчиков, определение поступления и отпуска электроэнергии по некоторым точкам учета расчетным путем (при несовпадении границ балансовой принадлежности сетей и мест установки приборов учета) и т. п.

Технические потери можно разделить на поэлементные составляющие, расход электроэнергии на собственные нужды подстанций включает в себя 24 типа электроприемников, погрешности учета включают составляющие, обусловленные измерительными трансформаторами тока, напряжения и электрическими счетчиками, коммерческие потери также могут быть разделены на многочисленные составляющие, отличающиеся причинами их возникновения. Такую структуру потерь назовем детальной структурой потерь электроэнергии (рис.1.1). Представленная на рисунке структура является полной для всех составляющих технологических потерь. Она неполна лишь для коммерческих потерь, для которых указаны только группы обуславливающих факторов, а не конкретные составляющие. В настоящее время описано более 40 способов хищений и надеяться на то, что это их окончательное число, невозможно.

Критерии отнесения части электроэнергии к потерям могут быть физического и экономического характера. Некоторые специалисты считают, что расход электроэнергии на собственные нужды подстанций надо относить к полезному отпуску, а остальные составляющие - к потерям. Расход на собственные нужды подстанций по характеру использования электроэнергии действительно ничем не отличается от ее использования потребителями. Однако это не является основанием считать его полезным отпуском, под которым понимают электроэнергию, отпущенную потребителям, а расход электроэнергии на собственные нужды подстанций является внутренним потреблением объекта. Кроме того, при таком обосновании молчаливо предполагается, что расход части энергии в элементах сетей на доставку другой ее части потребителям, в отличие от расхода на собственные нужды подстанций, не является полезным.